JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1): 59-66.doi: 10.12302/j.issn.1000-2006.202204044
Special Issue: 森林生态系统生物多样性研究专题
Previous Articles Next Articles
XING Bingbing(), LI Yao, MAO Lingfeng()
Received:
2022-04-19
Revised:
2022-05-11
Online:
2024-01-30
Published:
2024-01-24
Contact:
MAO Lingfeng
E-mail:1134828488@qq.com;maolingfeng2008@163.com
CLC Number:
XING Bingbing, LI Yao, MAO Lingfeng. Taxonomic and geographic differentiation of phylogenetic conservatism of plant functional traits: a case study of maximum plant height of Chinese angiosperms[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 59-66.
[1] | SIEBEN E J J, LE ROUX P C. Functional traits, spatial patterns and species associations: what is their combined role in the assembly of wetland plant communities?[J]. Plant Ecol, 2017, 218(4):433-445. DOI:10.1007/s11258-017-0701-6. |
[2] | 霍佳璇, 任梁, 潘莹萍, 等. 柴达木盆地荒漠植物功能性状及其对环境因子的响应[J]. 生态学报, 2022, 42(11):4494-4503. |
HUO J X, REN L, PAN Y P, et al. Functional traits of desert plants and their responses to environmental factors in Qaidam Basin,China[J]. Acta Ecol Sin, 2022, 42(11):4494-4503.DOI: 10.5846/stxb202105311432. | |
[3] | 贾婷, 宋武云, 关新贤, 等. 湿地松针叶功能性状及其对磷添加的响应[J]. 南京林业大学学报(自然科学版), 2021, 45(6):65-71. |
JIA T, SONG W Y, GUAN X X, et al. Responses of needle functional traits of Pinus elliottii to phosphorus addition[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(6): 65-71. DOI: 10.12302/j.issn.1000-2006.202101021. | |
[4] | KUNSTLER G, FALSTER D, COOMES D A, et al. Plant functional traits have globally consistent effects on competition[J]. Nature, 2016, 529(7585):204-207. DOI:10.1038/nature16476. |
[5] | AHMAD R, KHUROO A A, CHARLES B, et al. Global distributionmodelling, invasion risk assessment and niche dynamics of Leucanthemum vulgare (Ox-eye Daisy) under climate change[J]. Sci Rep, 2019, 9:11395. DOI:10.1038/s41598-019-47859-1. |
[6] | MASTROTHEODOROS T, PAPPAS C, MOLNAR P, et al. Linking plant functional trait plasticity and the large increase in forest water use efficiency[J]. JGR Biogeosciences, 2017, 122(9):2393-2408.DOI: 10.1002/2017jg003890. |
[7] | FLYNN D F B, MIROTCHNICK N, JAIN M, et al. Functional and phylogenetic diversity as predictors of biodiversity: ecosystem-function relationships[J]. Ecology, 2011, 92(8):1573-1581. DOI:10.1890/10-1245.1. |
[8] | CORNELISSEN J H C, LAVOREL S, GARNIER E, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide[J]. Aust J Bot, 2003, 51(4):335. DOI:10.1071/bt02124. |
[9] | AMES G M, ANDERSON S M, UNGBERG E A, et al. Functional traits of the understory plant community of a pyrogenic longleaf pine forest across environmental gradients[J]. Ecology, 2017, 98(8):2225. DOI:10.1002/ecy.1886. |
[10] | WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827. DOI:10.1038/nature02403. |
[11] | SWENSON N G, ENQUIST B J, PITHER J, et al. The biogeography and filtering of woody plant functional diversity in north and south America[J]. Glob Ecol Biogeogr, 2012, 21(8):798-808. DOI:10.1111/j.1466-8238.2011.00727.x. |
[12] | ACKERLY D D. Community assembly, niche conservatism, and adaptive evolution in changing environments[J]. Int J Plant Sci, 2003, 164(S3):S165-S184. DOI:10.1086/368401. |
[13] | MOLINA-VENEGAS R, MORENO-SAIZ J C, CASTRO PARGA I, et al. Assessing among-lineage variability in phylogenetic imputation of functional trait datasets[J]. Ecography, 2018, 41(10):1740-1749. DOI:10.1111/ecog.03480. |
[14] | FRECKLETON R P, HARVEY P H, PAGEL M. Phylogenetic analysis and comparative data: a test and review of evidence[J]. Am Nat, 2002, 160(6):712-726. DOI:10.1086/343873. |
[15] | 许格希, 史作民, 刘顺, 等. 尖峰岭热带山地雨林林冠层乔木某些功能性状的系统发育信号、关联性及其演化模式[J]. 生态学报, 2017, 37(17):5691-5703. |
XU G X, SHI Z M, LIU S, et al. Phylogenetic signals, correlations, and evolutionary patterns of some functional traits for forest canopy trees in Jianfengling tropical montane rainforest[J]. Chin J Plant Ecol, 2017, 37(17):5691-5703. DOI:10.5846/stxb201606131132. | |
[16] | CAVENDER-BARES J, KEEN A, MILES B. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale[J]. Ecology, 2006, 87(sp7):S109-S122. DOI:10.1890/0012-9658(2006)87[109:psofpc]2.0.co;2. |
[17] | KIA S H, GLYNOU K, NAU T, et al. Influence of phylogenetic conservatism and trait convergence on the interactions between fungal root endophytes and plants[J]. ISME J, 2017, 11(3):777-790. DOI:10.1038/ismej.2016.140. |
[18] | WEBB C O, LOSOS J B, AGRAWAL A A. Integrating phylogenies into community ecology1[J]. Ecology,2006, 87(sp7):S1-S2.DOI: 10.1890/0012-9658(2006)87[1:ipice]2.0.co;2. |
[19] | KRAFT N J B, ACKERLY D D. Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest[J]. Ecol Monogr, 2010, 80(3):401-422. DOI:10.1890/09-1672.1. |
[20] | VALLADARES F, BASTIAS C C, GODOY O, et al. Species coexistence in a changing world[J]. Front Plant Sci, 2015, 6:866. DOI:10.3389/fpls.2015.00866. |
[21] | MACARTHUR R, LEVINS R. The limiting similarity, convergence, and divergence of coexisting species[J]. Am Nat, 1967, 101(921):377-385. DOI:10.1086/282505. |
[22] | KERKHOFF A J, FAGAN W F, ELSER J J, et al. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants[J]. Am Nat, 2006, 168(4):E103-E122. DOI:10.1086/507879. |
[23] | KLUGE J, KESSLER M. Phylogenetic diversity, trait diversity and niches: species assembly of ferns along a tropical elevational gradient[J]. J Biogeogr, 2011, 38(2):394-405. DOI:10.1111/j.1365-2699.2010.02433.x. |
[24] | SWENSON N G, WEISER M D, MAO L F, et al. Phylogeny and the prediction of tree functional diversity across novel continental settings[J]. Glob Ecol Biogeogr, 2017, 26(5):553-562. DOI:10.1111/geb.12559. |
[25] | ENGEMANN K, ENQUIST B J, SANDEL B, et al. Limited sampling hampers “big data” estimation of species richness in a tropical biodiversity hotspot[J]. Ecol Evol, 2015, 5(3):807-820. DOI:10.1002/ece3.1405. |
[26] | DRAY S, JOSSE J. Principal component analysis with missing values: a comparative survey of methods[J]. Plant Ecol, 2015, 216(5):657-667. DOI:10.1007/s11258-014-0406-z. |
[27] | MOLES A T, ACKERLY D D, WEBB C O, et al. Factors that shape seed mass evolution[J]. Proc Natl Acad Sci U S A, 2005, 102(30):10540-10544. DOI:10.1073/pnas.0501473102. |
[28] | WANG Z, LI Y, SU X, et al. Patterns and ecological determinants of woody plant height in eastern Eurasia and its relation to primary productivity[J]. J Plant Ecol, 2019, 12(5): 791-803. DOI:10.1093/jpe/rtz025. |
[29] | CAHILL J F, KEMBEL S W, LAMB E G, et al. Does phylogenetic relatedness influence the strength of competition among vascular plants?[J]. Perspect Plant Ecol Evol Syst, 2008, 10(1):41-50.DOI: 10.1016/j.ppees.2007.10.001. |
[30] | DU Y J, MAO L F, QUEENBOROUGH S A, et al. Phylogenetic constraints and trait correlates of flowering phenology in the angiosperm flora of China[J]. Glob Ecol Biogeogr, 2015, 24(8):928-938. DOI:10.1111/geb.12303. |
[31] | LI D F, DU Y J, XU W B, et al. Phylogenetic conservatism of fruit development time in Chinese angiosperms and the phylogenetic and climatic correlates[J]. Glob Ecol Conserv, 2021, 27:e01543. DOI:10.1016/j.gecco.2021.e01543. |
[32] | YANG J, CI X Q, LU M M, et al. Functional traits of tree species with phylogenetic signal co-vary with environmental niches in two large forest dynamics plots[J]. J Plant Ecol, 2014, 7(2):115-125.DOI: 10.1093/jpe/rtt070. |
[33] | MOLES A T, WARTON D I, WARMAN L, et al. Global patterns in plant height[J]. J Ecol, 2009, 979(5):923-932. DOI:10.1111/j.1365-2745.2009.01526.x. |
[34] | 邱思玉, 曹元帅, 孙玉军, 等. 杉木人工林与年龄无关的优势高生长模型[J]. 南京林业大学学报(自然科学版), 2019, 43(5): 121-127. |
QIU S Y, CAO Y S, SUN Y J, et al. Age-independent dominant height growth model for Chinese fir plantation[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(5):121-127. DOI:10.3969/j.issn.1000-2006.201904046. | |
[35] | 毛岭峰. 中国种子植物多样性的空间格局-环境关系分异研究[D]. 北京: 中国科学院植物研究所, 2013. |
[36] | LU L M, MAO L F, YANG T, et al. Evolutionary history of the angiosperm flora of China[J]. Nature, 2018, 554(7691):234-238. DOI:10.1038/nature25485. |
[37] | SMITH S A, BROWN J W. Constructing a broadly inclusive seed plant phylogeny[J]. Am J Bot, 2018, 105(3):302-314. DOI:10.1002/ajb2.1019. |
[38] | JIN Y, QIAN H. V. PhyloMaker: an R package that can generate very large phylogenies for vascular plants[J]. Ecography, 2019, 42(8):1353-1359. DOI:10.1111/ecog.04434. |
[39] | BLOMBERG S P, GARLAND T Jr, IVES A R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile[J]. Evolution, 2003, 57(4):717-745. DOI:10.1111/j.0014-3820.2003.tb00285.x. |
[40] | LOSOS J B. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species[J]. Ecol Lett, 2008, 11(10):995-1003. DOI:10.1111/j.1461-0248.2008.01229.x. |
[41] | PAGEL M. Inferring the historical patterns of biological evolution[J]. Nature, 1999, 401(6756):877-884. DOI:10.1038/44766. |
[42] | BOYLE E E, ADAMOWICZ S J. Community phylogenetics: assessing tree reconstruction methods and the utility of DNA barcodes[J]. PLoS One, 2015, 10(6):e0126662. DOI:10.1371/journal.pone.0126662. |
[43] | REVELL L J. Phytools: an R package for phylogenetic comparative biology (and other things)[J]. Methods Ecol Evol, 2012, 3(2):217-223. DOI:10.1111/j.2041-210x.2011.00169.x. |
[44] | TAP Group. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV[J]. Bot J Linn Soc, 2016, 181(1):1-20. DOI: 10.1111/boj.12385. |
[45] | CLEVELAND W S. LOWESS: a program for smoothing scatterplots by robust locally weighted regression[J]. Am Stat, 1981, 35(1):54. DOI:10.2307/2683591. |
[46] | HIJMANS R J, CAMERON S E, PARRA J L, et al. Very high resolution interpolated climate surfaces for global land areas[J]. Int J Climatol, 2005, 25(15):1965-1978. DOI:10.1002/joc.1276. |
[47] | FITZJOHN R G, PENNELL M W, ZANNE A E, et al. How much of the world is woody?[J]. J Ecol, 2014, 102(5):1266-1272. DOI:10.1111/1365-2745.12260. |
[48] | 郄亚栋, 蒋腊梅, 吕光辉, 等. 温带荒漠植物叶片功能性状对土壤水盐的响应[J]. 生态环境学报, 2018, 27(11):2000-2010. |
QIE Y D, JIANG L M, LV G H, et al. Response of plant leaf functional traits to soil aridity and salinity in temperate desert ecosystem[J]. Ecol Environ Sci, 2018, 27(11):2000-2010. DOI:10.16258/j.cnki.1674-5906.2018.11.004. | |
[49] | ZANNE A E, TANK D C, CORNWELL W K, et al. Three keys to the radiation of angiosperms into freezing environments[J]. Nature, 2014, 506(7486):89-92. DOI:10.1038/nature12872. |
[50] | 邵晨, 李耀琪, 罗奥, 等. 不同生活型被子植物功能性状与基因组大小的关系[J]. 生物多样性, 2021, 29(5):575-585. |
SHAO C, LI Y Q, LUO A, et al. Relationship between functional traits and genome size variation of angiosperms with different life forms[J]. Biodivers Sci, 2021, 29(5):575-585. DOI:10.17520/biods.2020450. | |
[51] | 袁泉, 曹嘉瑜, 刘建峰, 等. 生长型分类方案不同导致森林生态系统植物功能性状的统计偏差[J]. 生态学报, 2021, 41(3):1106-1115. |
YUAN Q, CAO J Y, LIU J F, et al. Statistical bias of plant functional traits in forest ecosystems caused by different classifications of growth form[J]. Chin J Plant Ecol, 2021, 41(3):1106-1115. DOI:10.5846/stxb202002010188. | |
[52] | SMITH S A, BEAULIEU J M. Life history influences rates of climatic niche evolution in flowering plants[J]. Proc Biol Sci, 2009, 276(1677):4345-4352. DOI:10.1098/rspb.2009.1176. |
[53] | SOLTIS D E, MORT M E, LATVIS M, et al. Phylogenetic relationships and character evolution analysis of Saxifragales using a supermatrix approach[J]. Am J Bot, 2013, 100(5):916-929. DOI:10.3732/ajb.1300044. |
[54] | WAGNER G P, SCHWENK K. Evolutionarily stable configurations: functional integration and the evolution of phenotypic stability[M]. Springer US, 2000. DOI:10.1007/978-1-4615-4185-1_4. |
[55] | CRISP M D, COOK L G. Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes?[J]. New Phytol, 2012, 196(3):681-694. DOI:10.1111/j.1469-8137.2012.04298.x. |
[56] | ZHANG M G, SLIK J W F, MA K P. Using species distributionmodeling to delineate the botanical richness patterns and phytogeographical regions of China[J]. Sci Rep, 2016, 6:22400. DOI:10.1038/srep22400. |
[1] | LI Yansong, YANG Yanrong, ZHANG Wenyi, ZHANG Leying, HUANG Ao, ZHANG Yirong. Relationship between characteristics of lightning activity on different underlying surface and forest lightning fire in southwest China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 219-228. |
[2] | YIN Zengfang, OU Xiang, CHEN Yao, YANG Aixiang, SUN Liyong. Research progress and prospects of biological basis in Magnolia biondii [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 256-262. |
[3] | LUO Yiyi, LI Lingchao, CHENG Baodong. The impact of economic growth on forest fragmentation: a case study of Beijing-Tianjin-Hebei Region in China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 227-236. |
[4] | FAN Mingyang, HU Meng, YNAG Yuan, FANG Yanming. Community classification, structures and species diversity characteristics of Pinus massoniana and P. hwangshanensis in the eastern China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 47-58. |
[5] | ZHANG Xiang, DING Mingming, LIN Jie, LI Zhuoyuan, CUI Linlin, GUO Geng, YANG Hao. Spatial differentiation of soil properties in hilly red soil region under water erosion [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 77-84. |
[6] | WANG Liming, WANG Ruotong, LI Yong, ZHANG Heng. Simulation study on fire behavior on the China-Mongolia border in windless conditions [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 65-72. |
[7] | WANG Qingtong, DING Xiaolei, YE Jianren, SHI Xiufeng. Genetic differentiation of Bursaphelenchus xylophilus in east China based on single nucleotide polymorphisms (SNP) markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 21-28. |
[8] | XIAO Shiya, GAO Cuiqing. One newly-recorded genus and species of Oxycarenidae (Hemiptera: Heteroptera) from China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 165-168. |
[9] | LIU Ke, LI Mingyang, LI Ling, TIAN Kang, FAN Ya’nan, WANG Zhigang, QU Mingkai, HUANG Biao. Spatial heterogeneity of the soil organic carbon density and its driving factors in the water source area of the Middle Route of China South-to-North Water Diversion Project [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 35-43. |
[10] | ZHANG Heng, CUI Mengran, SHAN Yanlong, WANG Fei. Study on flammability of herbaceous fuel in typical grassland of China-Mongolia border [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 171-177. |
[11] | LIAO Yining, GUO Sujuan, WANG Fangfang, MA Yali, LIU Yabin. Effects of combined application of organic and inorganic fertilizers on soil fertility and root functional traits in chestnut orchards [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 84-92. |
[12] | JING Shuo, SUN Huizhen. The hydraulic characteristics of the whole branch and its components of the major tree species in the eastern region of northeast China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 159-166. |
[13] | GAO Qinyi, PAN Chunxia, LIU Qiang, GU Guangtong, ZHU Yalu, WU Weiguang. Risk assessments of forestry carbon sequestration projects based on Bayesian network [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 210-218. |
[14] | DENG Rui, ZHANG Meili, ZHOU Ming, ZHENG Baojiang. A newly recorded plant of the genus Ribes from China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 231-233. |
[15] | XUE Yuanyuan, LUAN Zhaoqing, SHI Dan, YAN Dandan. The influences of the hydraulic gradient on the ecological characteristics of wetland vegetation communities in Sanjiang Plain, Northeast China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 39-47. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||