JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (2): 175-181.doi: 10.12302/j.issn.1000-2006.202203011
Previous Articles Next Articles
NIU Hongjian1,2(), LIU Wenping1,2,*(), CHEN Riqiang1,2, ZONG Shixiang3, LUO Youqing3
Received:
2022-03-03
Revised:
2022-05-14
Online:
2024-03-30
Published:
2024-04-08
Contact:
LIU Wenping
E-mail:niuhj1996@gmail.com;wendyl@vip.163.com
CLC Number:
NIU Hongjian, LIU Wenping, CHEN Riqiang, ZONG Shixiang, LUO Youqing. Dehaze algorithm for woodland UAV images based on Resnet[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 175-181.
Table 2
The SSIM and PSNR based on test pictures"
图片编号 picture No. | 指标 index | Retinex算法 RETINEX | 暗通道算法 DCP | Resnet网络 Resnet | DHnet网络 DHnet |
---|---|---|---|---|---|
图片1 pic.1 | SSIM | 0.523 878 | 0.869 433 | 0.773 579 | 0.786 457 |
PSNR/dB | 16.745 32 | 14.018 84 | 17.962 64 | 18.942 81 | |
图片2 pic.2 | SSIM | 0.595 934 | 0.779 042 | 0.826 368 | 0.843 251 |
PSNR/dB | 17.164 37 | 12.708 94 | 14.946 92 | 22.045 21 | |
图片3 pic.3 | SSIM | 0.595 999 | 0.746 475 | 0.775 045 | 0.862 387 |
PSNR/dB | 13.520 62 | 15.130 59 | 14.609 65 | 25.674 42 | |
图片4 pic.4 | SSIM | 0.577 943 | 0.884 687 | 0.794 747 | 0.837 543 |
PSNR/dB | 17.150 06 | 17.479 14 | 16.103 61 | 22.306 94 | |
图片5 pic.5 | SSIM | 0.583 973 | 0.910 817 | 0.803 266 | 0.826 479 |
PSNR/dB | 16.730 17 | 18.052 34 | 14.767 70 | 23.743 68 |
[1] | 马鸿伟, 刘海, 姚顺彬, 等. 基于林业遥感的树种分类应用分析与展望[J]. 林业资源管理, 2020(3): 118-121. |
MA H W, LIU H, YAO S B, et al. Analysis and prospect on the application of tree species classification based on forestry remote sensing[J]. For Resour Manag, 2020(3): 118-121. DOI:10.13466/j.cnki.lyzygl.2020.03.022. | |
[2] | 韩文霆, 张立元, 牛亚晓, 等. 无人机遥感技术在精量灌溉中应用的研究进展[J]. 农业机械学报, 2020, 51(2): 1-14. |
HAN W T, ZHANG L Y, NIU Y X, et al. Review on UAV remote sensing application in precision irrigation[J]. Trans Chin Soc Agric Mach, 2020, 51(2): 1-14. DOI: 10.6041/j.issn.1000-1298.2020.02.001. | |
[3] | 徐誉远, 胡爽, 王本洋. 无人机遥感在我国森林资源监测中的应用动态[J]. 林业与环境科学, 2017, 33(1): 97-101. |
XU Y Y, HU S, WANG B Y. Present status of unmanned aerial vehicles remote sensing for forest resources monitoring in China[J]. For Enviro Sci, 2017, 33(1): 97-101. DOI: 10.3969/j.issn.1006-4427.2017.01.018. | |
[4] | 宋以宁, 刘文萍, 骆有庆, 等. 基于线性谱聚类的林地图像中枯死树监测[J]. 林业科学, 2019, 55(4): 187-195. |
SONG Y N, LIU W P, LUO Y Q, et al. Monitoring of dead trees in forest images based on linear spectral clustering[J]. Sci Silvae Sin, 2019, 55(4):187-195.DOI: 10.11707/j.1001-7488.20190420. | |
[5] | 郭璠, 蔡自兴. 图像去雾算法清晰化效果客观评价方法[J]. 自动化学报, 2012, 38(9): 1410-1419. |
GUO F, CAI Z X. Objective assessment method for the clearness effect of image defogging algorithm[J]. Acta Autom Sin, 2012, 38(9): 1410-1419. DOI:10.3724/SP.J.1004.2012.01410. | |
[6] | 吴迪, 朱青松. 图像去雾的最新研究进展[J]. 自动化学报, 2015, 41(2): 221-239. |
WU D, ZHU Q S. The latest research progress of image dehazing[J]. Acta Autom Sin, 2015, 41(2): 221-239. DOI:10.16383/j.aas.2015.c131137. | |
[7] | LAND E H, MCCANN J J. Lightness and retinex theory[J]. J Op Soc of Am, 1971, 61(1): 1-11. DOI: 10.1364/josa.61.000001. |
[8] | 李学明. 基于Retinex理论的图像增强算法[J]. 计算机应用研究, 2005, 22(2): 235-237. |
LI X M. Image enhancement algorithm based on retinex theory[J]. Application Research of Computers, 2005, 22(2): 235-237. | |
[9] | 李菊霞, 余雪丽. 雾天条件下的多尺度Retinex图像增强算法[J]. 计算机科学, 2013, 40(3): 299-301,F0003. |
LI J X, YU X L. Enhance algorithm for fog images based on improved multi-scale retinex[J]. Comput Sci, 2013, 40(3): 299-301,F0003.DOI: 10.3969/j.issn.1002-137X.2013.03.068. | |
[10] | KIM J H, JANG W D, SIM J Y, et al. Optimized contrast enhancement for real-time image and video dehazing[J]. J Vis Commun Image Represent, 2013, 24(3):410-425.DOI: 10.1016/j.jvcir.2013.02.004. |
[11] | LIAO B, YIN P, XIAO C X. Efficient image dehazing using boundary conditions and local contrast[J]. Comput Graph, 2018, 70:242-250.DOI: 10.1016/j.cag.2017.07.016. |
[12] | ANCUTI C O, ANCUTI C. Single image dehazing by multi-scale fusion[J]. IEEE Trans Image Process, 2013, 22(8):3271-3282.DOI: 10.1109/TIP.2013.2262284. |
[13] | LIU Q Z, LUO Y Q, LI K, et al. Single image defogging method based on image patch decomposition and multi-exposure image fusion[J]. Front Neurorobot, 2021, 15:700483.DOI: 10.3389/fnbot.2021.700483. |
[14] | HE K M, SUN J, TANG X O. Single image haze removal using dark channel prior[J]. IEEE Trans Pattern Anal Moch Intell, 2011, 33(12):2341-2353.DOI:10.1109/TPAMI.2010.168. |
[15] | CAI B, XU X, JIA K, et al. Dehazenet: an end-to-end system for single image haze removal[J]. IEEE Trans Image Process, 2016, 25(11):5187-5198.DOI: 10.1109/TIP.2016.2598681. |
[16] | LI B Y, PENG X L, WANG Z Y, et al. AOD-net:all-in-one deha-zing network[C]//2017 IEEE International Conference on Computer Vision (ICCV).Venice, Italy:IEEE, 2017:4780-4788.DOI: 10.1109/ICCV.2017.511. |
[17] | QU Y Y, CHEN Y Z, HUANG J Y, et al. Enhanced Pix2pix deha-zing network[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach,CA, USA: IEEE, 2020:8152-8160.DOI: 10.1109/CVPR.2019.00835. |
[18] | LIU X H, MA Y R, SHI Z H, et al. GridDehazeNet:attention-based multi-scale network for image dehazing[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV).Seoul, Korea (South): IEEE, 2020:7313-7322.DOI: 10.1109/ICCV.2019.00741. |
[19] | XU Y, WEN J, FEI L K, et al. Review of video and image defogging algorithms and related studies on image restoration and enhancement[J]. IEEE Access, 2015, 4:165-188.DOI: 10.1109/ACCESS.2015.2511558. |
[20] | 梁健, 巨海娟, 张文飞, 等. 偏振光学成像去雾技术综述[J]. 光学学报, 2017, 37(4):0400001. |
LIANG J, JU H J, ZHANG W F, et al. Review of optical polarimetric dehazing technique[J]. Acta Opt Sin, 2017, 37(4):0400001.DOI: 10.3788/AOS201737.0400001. | |
[21] | SCHECHNER Y Y, NARASIMHAN S G, NAYAR S K. Polarization-based vision through haze[J]. Appl Opt, 2003, 42(3):511-525.DOI: 10.1364/ao.42.000511. |
[22] | 王道累, 张天宇. 图像去雾算法的综述及分析[J]. 图学学报, 2020, 41(6):861-870 |
WANG D L, ZHANG T Y. Review and analysis of image defogging algorithm[J]. J Graph, 2020, 41(6):861-870.DOI: 10.11996/JG.j.2095-302X.2020060861. | |
[23] | 郭玥秀, 杨伟, 刘琦, 等. 残差网络研究综述[J]. 计算机应用研究, 2020, 37(5):1292-1297 |
GUO Y X, YANG W, LIU Q, et al. Survey of residual network[J]. Appl Res Comput, 2020, 37(5):1292-1297.DOI: 10.19734/j.issn.1001-3695.2018.12.0922. | |
[24] | GAO S H, CHENG M M, ZHAO K, et al. Res2Net:a new multi-scale backbone architecture[J]. IEEE Trans Pattern Anal Mach Intell, 2021, 43(2):652-662.DOI: 10.1109/TPAMI.2019.2938758. |
[25] | REDMON J, FARHADI A. YOLO9000:better,faster,stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu,HI, USA: IEEE, 2017:6517-6525.DOI: 10.1109/CVPR.2017.690. |
[26] | LIU M J, WANG X H, ZHOU A J, et al. UAV-YOLO:Small object detection on unmanned aerial vehicle perspective[J]. Sensors, 2020, 20(8):2238.DOI: 10.3390/s20082238. |
[27] | ULLAH H, MUHAMMAD K, IRFAN M, et al. Light-DehazeNet:a novel lightweight CNN architecture for single image dehazing[J]. IEEE Trans Image Process, 2021, 30:8968-8982.DOI: 10.1109/TIP.2021.3116790. |
[28] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas,NV, USA: IEEE, 2016:770-778.DOI: 10.1109/CVPR.2016.90. |
[29] | LI X T, ZHAO H L, HAN L, et al. Gated fully fusion for semantic segmentation[J]. Proc AAAI Conf Artif Intell, 2020, 34(7):11418-11425.DOI: 10.1609/aaai.v34i07.6805. |
[30] | 佟雨兵, 张其善, 祁云平. 基于PSNR与SSIM联合的图像质量评价模型[J]. 中国图象图形学报, 2006, 11(12): 1758-1763. |
TONG Y B, ZHANG Q S, QI Y P. Image quality assessing by combining PSNR with SSIM[J]. J Image Graph, 2006, 11(12): 1758-1763. |
[1] | ZHAO Yugang, LIU Wenping, ZHOU Yan, CHEN Riqiang, ZONG Shixiang, LUO Youqing. UAV forestry land-cover image segmentation method based on attention mechanism and improved DeepLabV3+ [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 93-103. |
[2] | HE Nailei, ZHANG Jinsheng, LIN Wenshu. Forest fire image recognition based on deep learning multi-target detection technology [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 207-218. |
[3] | XIANG Jun, YAN Enping, JIANG Jiawei, SONG Yabin, WEI Wei, MO Dengkui. Research on forest change detection based on fully convolutional network and low resolution label [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 187-195. |
[4] | YIN Xianming, JI Yu, ZHANG Riqing, MO Dengkui, PENG Shaofeng, WEI Wei. Research on recognition of Camellia oleifera leaf varieties based on deep learning [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 29-36. |
[5] | XU Shanshan, LYU Jingyan, CHEN Fangyuan. Remote sensing vegetation detection method based on the deep convolutional neural network [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 185-193. |
[6] | LIU Jiazheng, WANG Xuefeng, WANG Tian. Automatic identification of tree species based on deep learning [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(1): 138-144. |
[7] | CHENG Jianbin,WANG Jibin, WANG Nianjin,YAO Xiaohua. The fruit-xenia effects of Carya illinoensis pollination on C. cathayensis assisted by unmanned aerial vehicle(UAV) [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(04): 199-202. |
[8] | TAO Huan, LI Cunjun, XIE Chunchun, ZHOU Jingping, HUAI Heju, JIANG Liya, LI Fengtao. Recognition of red-attack pine trees from UAV imagery based on the HSV threshold method [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(03): 99-106. |
[9] | DAI Tingting, MA Jun, XU Yannan. Application of unmanned aerial vehicle(UAV)image automatic stitching in landscape planning based on Agisoft PhotoScan [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(04): 165-170. |
[10] | WANG Yan~1,LI Jun~2,GE Jian-ming~3,FENG Chen~1,MA Feng-lin~1. Effects of Microclimate in Woodland and Its Impacts on Four Pests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2004, 28(06): 115-117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||