JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (4): 104-112.doi: 10.12302/j.issn.1000-2006.202205041
Special Issue: 专题报道Ⅲ:智慧林业之森林可视化研究
Previous Articles Next Articles
ZHONG Hao(), WANG Chuhong, LIN Wenshu*()
Received:
2022-05-26
Revised:
2022-10-05
Online:
2024-07-30
Published:
2024-08-05
Contact:
LIN Wenshu
E-mail:260919837@qq.com;linwenshu@nefu.edu.cn
CLC Number:
ZHONG Hao, WANG Chuhong, LIN Wenshu. Tree species identification of combined TLS date and UAV images[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 104-112.
Table 2
Extraction results of tree parameters before and after fusion"
树种 tree species | 融合类型 fusion type | DBH/ cm | HT/ m | LC/ m | AC/ m2 | VC/m3 |
---|---|---|---|---|---|---|
樟子松 P. sylvestnis var. mongolica | 融合 | 26.1 | 16.68 | 4.03 | 13.28 | 59.44 |
未融合 | 15.28 | 3.65 | 11.32 | 42.58 | ||
黑皮油松 P. tabuliformis var. mukdensis | 融合 | 23.6 | 13.52 | 5.26 | 23.58 | 103.35 |
未融合 | 13.01 | 4.90 | 20.79 | 79.77 | ||
水曲柳 F. mandshurica | 融合 | 29.5 | 20.71 | 6.35 | 33.93 | 172.48 |
未融合 | 20.13 | 6.06 | 31.01 | 147.01 | ||
胡桃楸 J. mandshurica | 融合 | 33.4 | 17.37 | 7.16 | 42.96 | 206.27 |
未融合 | 16.37 | 6.64 | 37.46 | 174.57 |
Table 3
Tree species identification results"
方案 scheme | 参数 parameter | 各树种识别精度/% accuracy | 总精度/% OA | Kappa系数 Kappa coefficient | |||
---|---|---|---|---|---|---|---|
樟子松 P. sylvestris var. mogolica | 黑皮油松 P. tabuliformis var. mukdensis | 水曲柳 F. mandshurica | 胡桃楸 J. mandshurica | ||||
1 | 生产者精度PA | 83.33 | 50.00 | 73.91 | 92.59 | 77.17 | 0.69 |
用户精度UA | 71.43 | 69.23 | 73.91 | 89.29 | |||
2 | 生产者精度PA | 91.67 | 83.33 | 78.26 | 77.78 | 82.61 | 0.77 |
用户精度UA | 81.48 | 78.95 | 81.82 | 87.50 | |||
3 | 生产者精度PA | 91.67 | 72.22 | 82.61 | 92.59 | 85.87 | 0.81 |
用户精度UA | 91.67 | 76.47 | 90.48 | 83.33 | |||
4 | 生产者精度PA | 95.83 | 88.89 | 82.61 | 85.19 | 88.04 | 0.84 |
用户精度UA | 88.46 | 94.12 | 82.61 | 88.46 | |||
5 | 生产者精度PA | 83.33 | 55.56 | 86.96 | 92.59 | 81.52 | 0.75 |
用户精度UA | 83.33 | 71.43 | 76.92 | 89.29 | |||
6 | 生产者精度PA | 83.33 | 94.44 | 86.96 | 92.59 | 89.13 | 0.85 |
用户精度UA | 83.33 | 85.00 | 90.91 | 96.15 | |||
7 | 生产者精度PA | 95.83 | 94.44 | 86.96 | 96.30 | 93.48 | 0.91 |
用户精度UA | 92.00 | 94.44 | 95.24 | 92.86 |
[1] | LATIFI H, HEURICH M. Multi-scale remote sensing-assisted forest inventory:a glimpse of the state-of-the-art and future prospects[J]. Remote Sens, 2019, 11(11):1260.DOI: 10.3390/rs11111260. |
[2] | WHITE J C, COOPS N C, WULDER M A, et al. Remote sensing technologies for enhancing forest inventories:a review[J]. Can J Remote Sens, 2016, 42(5):619-641.DOI: 10.1080/07038992.2016.1207484. |
[3] | 李增元, 陈尔学. 中国林业遥感发展历程[J]. 遥感学报, 2021, 25(1):292-301. |
LI Z Y, CHEN E X. Development course of forestry remote sensing in China[J]. Natl Remote Sens Bull, 2021, 25(1):292-301. | |
[4] | FENG B K, ZHENG C, ZHANG W Q, et al. Analyzing the role of spatial features when cooperating hyperspectral and LiDAR data for the tree species classification in a subtropical plantation forest area[J]. JARS, 2020, 14(2):022213.DOI: 10.1117/1.JRS.14.022213. |
[5] | 曹林, 佘光辉, 代劲松, 等. 激光雷达技术估测森林生物量的研究现状及展望[J]. 南京林业大学学报(自然科学版), 2013, 37(3):163-169. |
CAO L, SHE G H, DAI J S, et al. Status and prospects of the LiDAR-based forest biomass estimation[J]. J Nanjing For Univ (Nat Sci Ed), 2013, 37(3):163-169.DOI: 10.3969/j.issn.1000-2006.2013.03.029. | |
[6] | WANG K P, WANG T J, LIU X H. A review:individual tree species classification using integrated airborne LiDAR and optical imagery with a focus on the urban environment[J]. Forests, 2018, 10(1):1.DOI: 10.3390/f10010001. |
[7] | 黄华国. 林业定量遥感研究进展和展望[J]. 北京林业大学学报, 2019, 41(12):1-14. |
HUANG H G. Progress and perspective of quantitative remote sensing of forestry[J]. J Beijing For Univ, 2019, 41(12):1-14.DOI: 10.12171/j.1000-1522.20190326. | |
[8] | ASNER G P, MASCARO J, MULLER-LANDAU H C, et al. A universal airborne LiDAR approach for tropical forest carbon mapping[J]. Oecologia, 2012, 168(4):1147-1160.DOI: 10.1007/s00442-011-2165-z. |
[9] | DIAN Y Y, PANG Y, DONG Y F, et al. Urban tree species mapping using airborne LiDAR and hyperspectral data[J]. J Indian Soc Remote Sens, 2016, 44(4):595-603.DOI: 10.1007/s12524-015-0543-4. |
[10] | MAN Q X, DONG P L, YANG X M, et al. Automatic extraction of grasses and individual trees in urban areas based on airborne hyperspectral and LiDAR data[J]. Remote Sens, 2020, 12(17):2725.DOI: 10.3390/rs12172725. |
[11] | WALLACE L, LUCIEER A, WATSON C, et al. Development of a UAV-LiDAR system with application to forest inventory[J]. Remote Sens, 2012, 4(6):1519-1543.DOI: 10.3390/rs4061519. |
[12] | WALLACE L, MUSK R, LUCIEER A. An assessment of the repeatability of automatic forest inventory metrics derived from UAV-borne laser scanning data[J]. IEEE Trans Geosci Remote Sens, 2014, 52(11):7160-7169.DOI: 10.1109/TGRS.2014.2308208. |
[13] | 刘清旺, 李世明, 李增元, 等. 无人机激光雷达与摄影测量林业应用研究进展[J]. 林业科学, 2017, 53(7):134-148. |
LIU Q W, LI S M, LI Z Y, et al. Review on the applications of UAV-based LiDAR and photogrammetry in forestry[J]. Sci Silvae Sin, 2017, 53(7):134-148.DOI: 10.11707/j.1001-7488.20170714. | |
[14] | MICHEZ A, PIÉGAY H, JONATHAN L, et al. Mapping of riparian invasive species with supervised classification of Unmanned Aerial System (UAS) imagery[J]. Int J Appl Earth Obs Geoinf, 2016, 44:88-94.DOI: 10.1016/j.jag.2015.06.014. |
[15] | 陈向宇, 云挺, 薛联凤, 等. 基于激光雷达点云数据的树种分类[J]. 激光与光电子学进展, 2019, 56(12):203-214. |
CHEN X Y, YUN T, XUE L F, et al. Classification of tree species based on LiDAR point cloud data[J]. Laser Optoelectron Prog, 2019, 56(12):203-214.DOI: 10.3788/LOP56.122801. | |
[16] | GUAN H Y, YU Y T, JI Z, et al. Deep learning-based tree classification using mobile LiDAR data[J]. Remote Sens Lett, 2015, 6(11):864-873.DOI: 10.1080/2150704x.2015.1088668. |
[17] | 廖小罕, 肖青, 张颢. 无人机遥感:大众化与拓展应用发展趋势[J]. 遥感学报, 2019, 23(6):1046-1052. |
LIAO X H, XIAO Q, ZHANG H. UAV remote sensing:popularization and expand application development trend[J]. J Remote Sens, 2019, 23(6):1046-1052. | |
[18] | FRANKLIN S E, AHMED O S. Deciduous tree species classification using object-based analysis and machine learning with unmanned aerial vehicle multispectral data[J]. Int J Remote Sens, 2018, 39(15/16):5236-5245.DOI: 10.1080/01431161.2017.1363442. |
[19] | FENG X X, LI P J. A tree species mapping method from UAV images over urban area using similarity in tree-crown object histograms[J]. Remote Sens, 2019, 11(17):1982.DOI: 10.3390/rs11171982. |
[20] | SAARINEN N, VASTARANTA M, NÄSI R, et al. Assessing biodiversity in boreal forests with UAV-based photogrammetric point clouds and hyperspectral imaging[J]. Remote Sens, 2018, 10(2):338.DOI: 10.3390/rs10020338. |
[21] | ŠAŠAK J, GALLAY M, KANUK J, et al. Combined use of terrestrial laser scanning and UAV photogrammetry in mapping alpine terrain[J]. Remote Sens, 2019, 11(18):2154.DOI: 10.3390/rs11182154. |
[22] | TONG X H, LIU X F, CHEN P, et al. Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas[J]. Remote Sens, 2015, 7(6):6635-6662.DOI: 10.3390/rs70606635. |
[23] | ROŞCA S, SUOMALAINEN J, BARTHOLOMEUS H, et al. Comparing terrestrial laser scanning and unmanned aerial vehicle structure from motion to assess top of canopy structure in tropical forests[J]. Interface Focus, 2018, 8(2):20170038.DOI: 10.1098/rsfs.2017.0038. |
[24] | 张吴明, 李丹, 陈一铭, 等. 联合地基激光雷达与无人机摄影测量技术提取树高研究[J]. 北京师范大学学报(自然科学版), 2018, 54(6):764-771. |
ZHANG W M, LI D, CHEN Y M, et al. Integration between TLS and UAV photogrammetry techniques for retrieving tree height[J]. J Beijing Norm Univ (Nat Sci), 2018, 54(6):764-771.DOI: 10.16360/j.cnki.jbnuns.2018.06.011. | |
[25] | 曹明兰, 李亚东, 冯海英, 等. 倾斜摄影与激光扫描技术结合的3D森林景观建模[J]. 中南林业科技大学学报, 2019, 39(12):10-15,33. |
CAO M L, LI Y D, FENG H Y, et al. 3D forest landscape modeling with the combination of oblique photography and laser scanner technique[J]. J Cent South Univ For Technol, 2019, 39(12):10-15,33.DOI: 10.14067/j.cnki.1673-923x.2019.12.002. | |
[26] | 王楚虹, 刘浩然, 钟浩, 等. 联合UAV-LiDAR和HMLS技术的森林样地点云数据融合[J]. 中南林业科技大学学报, 2022, 42(3):26-38. |
WANG C H, LIU H R, ZHONG H, et al. Point cloud data fusion of forest plots based on UAV-LiDAR and HMLS technologies[J]. J Cent South Univ For Technol, 2022, 42(3):26-38.DOI: 10.14067/j.cnki.1673-923x.2022.03.004. | |
[27] | 黎华, 凯吾沙·塔依尔, 林木森, 等. 改进拟牛顿算法的点云稠密化应用研究[J]. 测绘科学, 2021, 46(12):83-90. |
LI H, Kai Wusha·Tayier, LIN M S, et al. Research on application of improved Quasi-Newton algorithm in point cloud densification[J]. Sci Surv Mapp, 2021, 46(12):83-90.DOI: 10.16251/j.cnki.1009-2307.2021.12.012. | |
[28] | TAO S L, WU F F, GUO Q H, et al. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories[J]. ISPRS J Photogramm Remote Sens, 2015, 110:66-76.DOI: 10.1016/j.isprsjprs.2015.10.007. |
[29] | ZHANG Z Y, LIU X Y. Support vector machines for tree species identification using LiDAR-derived structure and intensity variables[J]. Geocarto Int, 2013, 28(4):364-378.DOI: 10.1080/10106049.2012.710653. |
[30] | ZIEGLER A, KÖNIG I R. Mining data with random forests:current options for real-world applications[J]. Wiley Interdiscip Rev Data Min Knowl Discov, 2014, 4(1):55-63.DOI: 10.1002/widm.1114. |
[31] | 杨龙, 孙中宇, 唐光良, 等. 基于微型无人机遥感的亚热带林冠物种识别[J]. 热带地理, 2016, 36(5):833-839. |
YANG L, SUN Z Y, TANG G L, et al. Identifying canopy species of subtropical forest by lightweight unmanned aerial vehicle remote sensing[J]. Trop Geogr, 2016, 36(5):833-839.DOI: 10.13284/j.cnki.rddl.002857. | |
[32] | 杜培军, 夏俊士, 薛朝辉, 等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2):236-256. |
DU P J, XIA J S, XUE Z H, et al. Review of hyperspectral remote sensing image classification[J]. J Remote Sens, 2016, 20(2):236-256.DOI: 10.11834/jrs.20165022. | |
[33] | 童庆禧, 张兵, 张立福. 中国高光谱遥感的前沿进展[J]. 遥感学报, 2016, 20(5):689-707. |
TONG Q X, ZHANG B, ZHANG L F. Current progress of hyperspectral remote sensing in China[J]. J Remote Sens, 2016, 20(5):689-707.DOI: 10.11834/jrs.20166264. | |
[34] | ZHONG H, LIN W S, LIU H R, et al. Identification of tree species based on the fusion of UAV hyperspectral image and LiDAR data in a coniferous and broad-leaved mixed forest in northeast China[J]. Front Plant Sci, 2022, 13:964769.DOI: 10.3389/fpls.2022.964769. |
[35] | 刘嘉政, 王雪峰, 王甜. 基于深度学习的树种图像自动识别[J]. 南京林业大学学报(自然科学版), 2020, 44(1):138-144. |
LIU J Z, WANG X F, WANG T. Automatic identification of tree species based on deep learning[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(1):138-144.DOI: 10.3969/j.issn.1000-2006.201809004. |
[1] | YAN Yu, LI Qiujie. Online segmentation method of target point cloud in roadside tree [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 141-149. |
[2] | PAN Zhengshang, MA Kaisen, LONG Yi, LAI Zhengui, SUN Hua. An improved CART model for leaf and wood classification from LiDAR point clouds of Quercus glauca individual trees [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 123-131. |
[3] | DONG Hanyuan, YU Ying, FAN Wenyi. Verification of performance of understory terrain inversion from spaceborne lidar GEDI data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 141-149. |
[4] | SHEN Wenjuan, JI Mei, LI Mingshi. Review on monitoring methods of the effects of forest changes on regional temperature based on multi-source remote sensing data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 1-11. |
[5] | JU Yilin, JI Yongjie, HUANG Jimao, ZHANG Wangfei. Inversion of forest aboveground biomass using combination of LiDAR and multispectral data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 58-68. |
[6] | ZHAO Yinghui, ZHANG Dali, ZHEN Zhen. Individual tree species classification based on nonparametric classification algorithms and multi-source remote sensing data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(5): 103-112. |
[7] | QIU Sai, XING Yanqiu, TIAN Jing, DING Jianhua. Estimation of forest canopy density based on ICESat-GLAS waveform data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(05): 99-106. |
[8] | ZHANG Dong, YUN Ting, XUE Lianfeng, RUAN Honghua. Skeleton extraction for point cloud trees based on force field [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(02): 160-166. |
[9] | ZHANG Tian’an,YUN Ting,XUE Lianfeng,AN Feng. A new 3D modeling method for branches of standing trees based on point cloud data of terrestrial laser scanning [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2015, 39(04): 163-167. |
[10] | CAO Lin, ZHU Xingzhou, DAI Jinsong, XU Ziqian, SHE Guanghui. Error analysis of DEM interpolation based on small-footprint airborne LiDAR in subtropical hilly forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(04): 7-13. |
[11] | CAO Lin, SHE Guanghui, DAI Jinsong, XU Jianxin. Status and prospects of the LiDAR-based forest biomass estimation [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2013, 37(03): 163-169. |
[12] | ZHOU Yu, ZHANG Li-ning, WU Li-mei. Design and Implementation of Multi-source Remote Sensing Image Fusion Platform [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2006, 30(04): 85-88. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||