JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (4): 123-131.doi: 10.12302/j.issn.1000-2006.202211006
Special Issue: 专题报道Ⅲ:智慧林业之森林可视化研究
Previous Articles Next Articles
PAN Zhengshang1(), MA Kaisen1, LONG Yi1, LAI Zhengui2, SUN Hua1,*()
Received:
2022-11-04
Revised:
2022-12-28
Online:
2024-07-30
Published:
2024-08-05
Contact:
SUN Hua
E-mail:20201100030@csuft.edu.cn;sunhua@csuft.edu.cn
CLC Number:
PAN Zhengshang, MA Kaisen, LONG Yi, LAI Zhengui, SUN Hua. An improved CART model for leaf and wood classification from LiDAR point clouds of Quercus glauca individual trees[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 123-131.
Table 4
Physical property of CART model"
分类模型 classification model | 特征变量数 number of features | 最大深度 max depth | 节点数 number of node | 训练时间/s training time | 模型大小/kB model size | 准确率 precision |
---|---|---|---|---|---|---|
CART | 3 | 111 | 12 005 413 | 535.9 | 864 391 | 0.722 |
改进CART improving CART | 5 | 75 | 4 707 427 | 704.3 | 338 936 | 0.824 |
调整改进CART adjusting and improving CART | 5 | 12 | 7 591 | 361.3 | 548 | 0.901 |
Table 5
Comparison of classification results"
模型 model | 数据 data | 数据类型 data type | 正确分类点 classified correctly points | 错误分类点 classified incorrectly points | 准确率 precision | 精确度 accuracy | 召回率 recall | 综合 评价指标 F-score |
---|---|---|---|---|---|---|---|---|
LR | 训练数据 | 树干 | 14 020 775 | 3 467 492 | 0.801 | 0.821 | 0.801 | 0.811 |
树叶 | 12 281 952 | 3 051 656 | 0.780 | 0.801 | 0.790 | |||
测试数据 | 树干 | 3 514 156 | 1 405 210 | 0.796 | 0.859 | 0.714 | 0.780 | |
树叶 | 4 214 575 | 575 379 | 0.750 | 0.880 | 0.809 | |||
KNN | 训练数据 | 树干 | 14 579 330 | 2 011 562 | 0.863 | 0.854 | 0.879 | 0.866 |
树叶 | 13 737 882 | 2 493 101 | 0.872 | 0.846 | 0.859 | |||
测试数据 | 树干 | 3 358 470 | 1 292 731 | 0.792 | 0.821 | 0.722 | 0.768 | |
树叶 | 4 327 054 | 731 065 | 0.770 | 0.855 | 0.810 | |||
CART | 训练数据 | 树干 | 17 071 982 | 724 | 1 | 1 | 1 | 1 |
树叶 | 15 748 720 | 449 | 1 | 1 | 1 | |||
测试数据 | 树干 | 3 165 326 | 1735 346 | 0.726 | 0.774 | 0.646 | 0.704 | |
树叶 | 3 884 439 | 924 209 | 0.691 | 0.808 | 0.745 | |||
改进 CART improving CART | 训练数据 | 树干 | 17 071 993 | 724 | 1 | 1 | 1 | 1 |
树叶 | 15 748 720 | 438 | 1 | 1 | 1 | |||
测试数据 | 树干 | 3 491 232 | 1 056 703 | 0.830 | 0.854 | 0.768 | 0.808 | |
树叶 | 4 563 082 | 598 303 | 0.812 | 0.884 | 0.846 | |||
调整改进 CART adjusting and improving CART | 训练数据 | 树干 | 14 506 710 | 776 175 | 0.898 | 0.850 | 0.949 | 0.897 |
树叶 | 14 973 269 | 2 565 721 | 0.951 | 0.854 | 0.900 | |||
测试数据 | 树干 | 3 476 917 | 351 018 | 0.900 | 0.850 | 0.908 | 0.878 | |
树叶 | 5 268 767 | 612 618 | 0.938 | 0.895 | 0.916 |
[1] | TAO S L, GUO Q H, XU S W, et al. A geometric method for wood-leaf separation using terrestrial and simulated lidar data[J]. Photogram Engng Rem Sens, 2015, 81(10):767-776.DOI: 10.14358/pers.81.10.767. |
[2] | 杨必胜, 董震. 点云智能研究进展与趋势[J]. 测绘学报, 2019, 48(12):1575-1585. |
YANG B S, DONG Z. Progress and perspective of point cloud intelligence[J]. Acta Geod Cartogr Sin, 2019, 48(12):1575-1585.DOI: 10.11947/j.AGCS.2019.20190465. | |
[3] | 孙圆, 林秀云, 熊金鑫, 等. 基于地面激光强度校正数据的单木枝叶分离[J]. 中国激光, 2021, 48(1):0104001. |
SUN Y, LIN X Y, XIONG J X, et al. Separation of single wood branches and leaves based on corrected TLS intensity data[J]. Chin J Lasers, 2021, 48(1):0104001.DOI: 10.3788/CJL202148.0104001. | |
[4] | CALDERS K, DISNEY M I, ARMSTON J, et al. Evaluation of the range accuracy and the radiometric calibration of multiple terrestrial laser scanning instruments for data interoperability[J]. IEEE Trans Geosci Remote Sens, 2017, 55(5):2716-2724.DOI: 10.1109/TGRS.2017.2652721. |
[5] | 夏国芳, 胡春梅, 曹毕铮, 等. 激光入射角度对点云反射强度的影响研究[J]. 激光杂志, 2016, 37(4):11-13. |
XIA G F, HU C M, CAO B Z, et al. Study on the influence of laser incident angle on the reflection intensity of the point cloud[J]. Laser J, 2016, 37(4):11-13.DOI: 10.14016/j.cnki.jgzz.2016.04.011. | |
[6] | 曹伟, 陈动, 史玉峰, 等. 激光雷达点云树木建模研究进展与展望[J]. 武汉大学学报(信息科学版), 2021, 46(2):203-220. |
CAO W, CHEN D, SHI Y F, et al. Progress and prospect of LiDAR point clouds to 3D tree models[J]. Geomat Inf Sci Wuhan Univ, 2021, 46(2):203-220.DOI: 10.13203/j.whugis20190275. | |
[7] | 黄亮, 许文雅, 谭帅. 树木三维点云的枝叶分割方法[J]. 北京测绘, 2022, 36(1):18-22. |
HUANG L, XU W Y, TAN S. 3D point cloud segmentation method for branches and leaves of trees[J]. Beijing Surv Mapp, 2022, 36(1):18-22.DOI: 10.19580/j.cnki.1007-3000.2022.01.004. | |
[8] | FARMAKIS I, BONNEAU D, HUTCHINSON D J, et al. Supervoxel-based multi-scale point cloud segmentation using fnea for object-oriented rock slope classification using TLS[J]. Int Arch Photogramm Remote Sens Spatial Inf Sci, 2020, 43:1049-1056.DOI: 10.5194/isprs-archives-xliii-b2-2020-1049-2020. |
[9] | 林筱涵, 李爱农, 边金虎, 等. 基于网络图的地基激光雷达复杂树木点云枝叶分离方法[J]. 遥感技术与应用, 2022, 37(1):161-172. |
LIN X H, LI A N, BIAN J H, et al. A method for separating leaf and wood components of complex tree point cloud data based on network graph with terrestrial laser scanning[J]. Remote Sens Technol Appl, 2022, 37(1):161-172.DOI: 10.11873/j.issn.1004-0323.2022.1.0161. | |
[10] | WANG D, MOMO T S, CASELLA E. LeWoS:a universal leaf-wood classification method to facilitate the 3D modelling of large tropical trees using terrestrial LiDAR[J]. Me-thods Ecol Evol, 2020, 11(3):376-389.DOI: 10.1111/2041-210x.13342. |
[11] | WANG D, HOLLAUS M, PFEIFER N. Feasibility of machine learning methods for separating wood and leaf points from terrestrial laser scanning data[J]. ISPRS Ann Photogramm Remote Sens Spatial Inf Sci, 2017, IV-2/W4:157-164.DOI: 10.5194/isprs-annals-iv-2-w4-157-2017. |
[12] | VICARI M B, DISNEY M, WILKES P, et al. Leaf and wood classification framework for terrestrial LiDAR point clouds[J]. Methods Ecol Evol, 2019, 10(5):680-694.DOI: 10.1111/2041-210x.13144. |
[13] | QI C R, YI L, SU H, et al. PointNet++:deep hierarchical feature learning on point sets in a metric space[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. December,2017, Long Beach,California,USA: ACM, 2017:5105-5114.DOI: 10.5555/3295222.3295263. |
[14] | 赵江洪, 窦新铜, 曹月娥, 等. 一种基于分割结果实现三维点云分类的方法[J]. 测绘科学, 2022, 47(3):85-95. |
ZHAO J H, DOU X T, CAO Y E, et al. A method for 3D point cloud classification based on segmentation results[J]. Sci Surv Mapp, 2022, 47(3):85-95.DOI: 10.16251/j.cnki.1009-2307.2022.03.012. | |
[15] | ZHOU J J, WEI H Q, ZHOU G Y, et al. Separating leaf and wood points in terrestrial laser scanning data using multiple optimal scales[J]. Sensors, 2019, 19(8):1852.DOI: 10.3390/s19081852. |
[16] | 汪献义, 邢艳秋, 尤号田, 等. 基于近邻几何特征的TLS林分点云分类研究[J]. 北京林业大学学报, 2019, 41(6):138-146. |
WANG X Y, XING Y Q, YOU H T, et al. TLS point cloud classification of forest based on nearby geometric features[J]. J Beijing For Univ, 2019, 41(6):138-146.DOI: 10.13332/j.1000-1522.20180308. | |
[17] | 麻卫峰, 王金亮, 张建鹏, 等. 一种改进法向量估算的点云特征提取[J]. 测绘科学, 2021, 46(11):84-90,146. |
MA W F, WANG J L, ZHANG J P, et al. Feature extraction from point cloud based on improved normal vector[J]. Sci Surv Mapp, 2021, 46(11):84-90,146.DOI: 10.16251/j.cnki.1009-2307.2021.11.012. | |
[18] | 梁冲. 面向树木特征提取的室外场景点云数据语义分类[D]. 南京: 南京师范大学, 2021. |
LIANG C. Semantic classification of outdoor scenic spot pointcloud data for tree feature extraction[D]. Nanjing: Nanjing Normal University, 2021. | |
[19] | ZHU X, SKIDMORE A K, DARVISHZADEH R, et al. Foliar and woody materials discriminated using terrestrial LiDAR in a mixed natural forest[J]. Int J Appl Earth Obs Geoinf, 2018, 64:43-50.DOI: 10.1016/j.jag.2017.09.004. |
[20] | 卢晓艺, 云挺, 薛联凤, 等. 基于树木激光点云的有效特征抽取与识别方法[J]. 中国激光, 2019, 46(5):411-422. |
LU X Y, YUN T, XUE L F, et al. Effective feature extraction and identification method based on tree laser point cloud[J]. Chin J Lasers, 2019, 46(5):411-422.DOI: 10.3788/CJL201946.0510002. | |
[21] | PATEL H H, PRAJAPATI P. Study and analysis of decision tree based classification algorithms[J]. Ijcse, 2018, 6(10):74-78.DOI: 10.26438/ijcse/v6i10.7478. |
[22] | 王艳秋, 徐传飞, 于戈, 等. 一种面向不确定对象的可见k近邻查询算法[J]. 计算机学报, 2010, 33(10):1943-1952. |
WANG Y Q, XU C F, YU G, et al. Visible k-nearest neighbor queries over uncertain data[J]. Chin J Comput, 2010, 33(10):1943-1952.DOI: 10.3724/SP.J.1016.2010.01943. | |
[23] | 刘刚, 尹一涵, 郑智源, 等. 基于三维点云的群体樱桃树冠层去噪和配准方法[J]. 农业机械学报, 2022, 53(S2):1-11. |
LIU G, YIN Y H, ZHENG Z Y, et al. Denoising and registration method of group cherry trees canopy based on 3D point cloud[J]. Trans Chin Soc Agric Mach, 2022, 53(S2):1-11.DOI: 10.6041/j.issn.1000-1298.2022.s2.021. | |
[24] | 张卉冉, 董震, 杨必胜, 等. 点云压缩研究进展与趋势[J]. 武汉大学学报(信息科学版), 2023, 48(2):192-205. |
ZHANG H R, DONG Z, YANG B S, et al. Progress and perspectives of point cloud compression[J]. Geomatics and Information Science of Wuhan University, 2023, 48(2):192-205.DOI: 10.13203/j.whugis20210103. | |
[25] | CHENG X, ZENG M, LIN J P, et al. Efficient L0 resampling of point sets[J]. Comput Aided Geom Des, 2019, 75:101790.DOI: 10.1016/j.cagd.2019.101790. |
[26] | DONG Z, YANG B S, LIANG F X, et al. Hierarchical registration of unordered TLS point clouds based on binary shape context descriptor[J]. ISPRS J Photogramm Remote Sens, 2018, 144:61-79.DOI: 10.1016/j.isprsjprs.2018.06.018. |
[27] | 张继超, 刘宁, 宋伟东, 等. 一种特征选择的全极化雷达影像分类方法[J]. 测绘科学, 2022, 47(6):127-134. |
ZHANG J C, LIU N, SONG W D, et al. A fully polarimetric radar image classification method based on feature selection[J]. Sci Surv Mapp, 2022, 47(6):127-134.DOI: 10.16251/j.cnki.1009-2307.2022.06.016. | |
[28] | 卢华清, 伍吉仓, 张子健. 面向地基激光点云的树木枝叶分离[J]. 中国激光, 2022, 49(23):156-167. |
LU H Q, WU J C, ZHANG Z J. Tree branch and leaf separation facing TLS point cloud[J]. Chin J Lasers, 2022, 49(23):156-167. DOI: 10.3788/CJL.202249.2310001. | |
[29] | BECKER C, ROSINSKAYA E, HÄNI N, et al. Classification of aerial photogrammetric 3D point clouds[J]. Photogramm Eng Remote Sensing, 2018, 84(5):287-295.DOI: 10.14358/pers.84.5.287. |
[30] | 邢艳秋, 蔡硕, 汪献义. 采用多尺度近邻体素特征的TLS林分点云分类[J]. 遥感信息, 2021, 36(5):1-7. |
XING Y Q, CAI S, WANG X Y. TLS point cloud classification of forest by multi-scale neighbor voxel features[J]. Remote Sens Inf, 2021, 36(5):1-7.DOI: 10.3969/j.issn.1000-3177.2021.05.001. |
[1] | YI Jing, MA Kaisen, XIANG Jianping, TANG Jie, JIANG Fugen, CHEN Song, SUN Hua. Research on TLS single tree detection method based on point cloud slicing combined with clustering algorithm [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 113-122. |
[2] | YAN Yu, LI Qiujie. Online segmentation method of target point cloud in roadside tree [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 141-149. |
[3] | ZHAO Yugang, LIU Wenping, ZHOU Yan, CHEN Riqiang, ZONG Shixiang, LUO Youqing. UAV forestry land-cover image segmentation method based on attention mechanism and improved DeepLabV3+ [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 93-103. |
[4] | NIU Hongjian, LIU Wenping, CHEN Riqiang, ZONG Shixiang, LUO Youqing. Dehaze algorithm for woodland UAV images based on Resnet [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 175-18. |
[5] | GAO Xieyu, DONG Lihu, HAO Yuanshuo. Effects of thinning on Larix olgensis plantation stem form based on TLS [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 85-94. |
[6] | LI Shuangxian, LU Xin, Duojie Cairen, ZHANG Huaiqing, XUE Lianfeng, YUN Ting. A novel approach for leaf area retrieval from terrestrial laser scanned points [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 28-38. |
[7] | ZHANG Huacong, TAN Xinjian, YU Longhua, LI Yueqiao, CHEN Yongfu, LIU Ren, ZHANG Huaiqing. Crown segmentation of CHM based on the enhanced frost local filtering and distance map reconstruction [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 9-18. |
[8] | SUN Yu, LI Fengri, XIE Longfei, DONG Lihu. Construction of the stand-level biomass model of Larix olgensis plantations based on stand and topographic factors [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 129-136. |
[9] | TANG Yiren, JIA Weiwei, WANG Fan, SUN Yuman, ZHANG Ying. Constructing a biomass model of Larix olgensis primary branches based on TLS [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 130-140. |
[10] | OU Jiande. Effects of forking on the crown morphology, growth and form quality of Taxus chinensis var. mairei [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 87-94. |
[11] | WANG Fan, JIA Weiwei, TANG Yiren, LI Dandan. Extraction of crown radius and development of crown profile model of Pinus koraiensis based on TLS [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 13-22. |
[12] | CHENG Xiaofei, WU Gang. Locating individual tree from high resolution satellite images based on CV model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 143-151. |
[13] | NIE Luyi, DONG Lihu, LI Fengri, MIAO Zheng, XIE Longfei. Construction of taper equation for Larix olgensis based on two-level nonlinear mixed effects model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 194-202. |
[14] | ZHAO Qing, HUANG Fei, CHEN Xiaohui, LIN Yuying, QIU Rongzu, WU Zhilong, HU Xisheng. Spatiotemporal variations and a driving force analysis of arbor forest loss [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 227-235. |
[15] | XIN Shidong, JIANG Lichun, MU Lin. Predictive model of stand tree layer additive carbon storage of Korean pine plantation in Heilongjiang Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 115-121. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||