JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (6): 229-238.doi: 10.12302/j.issn.1000-2006.202305026
Previous Articles Next Articles
LIU Yandi(), ZHANG Cheng, SUN Zhe, LYU Jiehua*()
Received:
2023-05-24
Revised:
2023-07-03
Online:
2024-11-30
Published:
2024-12-10
Contact:
LYU Jiehua
E-mail:1048116902@qq.com;Lvjiehua2004@126.com
CLC Number:
LIU Yandi, ZHANG Cheng, SUN Zhe, LYU Jiehua. An analysis of the spatial and temporal correlation effects of forestry labor productivity and its influencing factors in China[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 229-238.
Table 1
Descriptive statistics of variables"
变量 variable | 样本量 sample | 均值 mean | 标准差 SD | 最小值 min. | 最大值 max. |
---|---|---|---|---|---|
lnY | 341 | 5.867 | 1.335 | 2.032 | 8.636 |
lnCLR | 341 | 4.449 | 1.024 | 2.486 | 7.355 |
lnFLR | 341 | 5.679 | 0.868 | 3.621 | 9.371 |
AGG | 341 | 0.991 | 0.714 | 0.017 | 4.236 |
ISO | 341 | 1.657 | 0.294 | 1.009 | 2.355 |
lnREM | 341 | 10.629 | 0.491 | 9.464 | 11.998 |
TE | 341 | 2.090 | 0.654 | 0.652 | 4.112 |
PE | 341 | 1.296 | 0.539 | 0.774 | 3.718 |
SE | 341 | 0.837 | 0.255 | 0.201 | 1.620 |
Table 2
Moran index (Ix) and Z test results of forestry labor productivity in China, 2010 to 2020"
年份year | Ix | Z |
---|---|---|
2010 | 0.551*** | 5.123 2 |
2011 | 0.576*** | 5.360 5 |
2012 | 0.579*** | 5.307 6 |
2013 | 0.586*** | 5.356 7 |
2014 | 0.606*** | 5.534 8 |
2015 | 0.609*** | 5.569 1 |
2016 | 0.602*** | 5.532 8 |
2017 | 0.620*** | 5.728 9 |
2018 | 0.655*** | 5.974 4 |
2019 | 0.704*** | 6.404 7 |
2020 | 0.717*** | 6.528 9 |
Table 3
Bivariate Moran index (Ixy) and Z test results of forestry labor productivity in China, 2010—2020"
年份 year | 外向溢出效应 outward spillover effect | 内向溢出效应 inward spillover effect | ||
---|---|---|---|---|
Ixy | Z | Ixy | Z | |
2010—2011 | 0.573*** | 5.334 2 | 0.555*** | 5.190 0 |
2011—2012 | 0.583*** | 5.398 3 | 0.576*** | 5.343 8 |
2012—2013 | 0.584*** | 5.359 4 | 0.581*** | 5.329 5 |
2013—2014 | 0.593*** | 5.432 7 | 0.601*** | 5.491 5 |
2014—2015 | 0.607*** | 5.557 8 | 0.605*** | 5.535 4 |
2015—2016 | 0.599*** | 5.528 2 | 0.611*** | 5.638 8 |
2016—2017 | 0.613*** | 5.659 1 | 0.608*** | 6.640 5 |
2017—2018 | 0.638*** | 5.866 1 | 0.636*** | 5.855 7 |
2018—2019 | 0.687*** | 6.280 4 | 0.674*** | 6.179 3 |
2019—2020 | 0.707*** | 6.445 2 | 0.713*** | 6.515 9 |
Table 4
Spatial and temporal correlation characteristics of forestry labor productivity in China by province, 2010—2011 and 2019—2020"
溢出方式 spillover mode | 年份 year | 高-高 high-high | 低-高 low-high | 低-低 low-low | 高-低 high-low |
---|---|---|---|---|---|
外向溢出 outward spillover | 2010—2011 | 安徽、福建、河南、湖北、湖南、江苏、江西、山东、浙江、海南、广东、广西、上海 | 北京、贵州 | 黑龙江、陕西、山西、甘肃、吉林、宁夏、青海、云南、新疆、西藏、 内蒙古 | 重庆、天津、河北、 辽宁、四川 |
2019—2020 | 重庆、安徽、福建、贵州、河南、湖北、湖南、江苏、江西、山东、浙江、海南、广东、广西、上海 | 云南 | 北京、天津、黑龙江、辽宁、陕西、山西、甘肃、吉林、宁夏、青海、 新疆、西藏、内蒙古 | 河北、四川 | |
内向溢出 inward spillover | 2010—2011 | 安徽、福建、河南、湖北、湖南、江苏、山东、浙江、海南、广东、广西、上海 | 北京、贵州、 江西 | 黑龙江、陕西、山西、甘肃、吉林、宁夏、青海、云南、新疆、西藏、 内蒙古 | 重庆、天津、河北、 辽宁、四川 |
2019—2020 | 重庆、安徽、福建、贵州、河南、湖北、湖南、江苏、江西、山东、浙江、海南、广东、广西、上海 | 云南 | 北京、天津、黑龙江、辽宁、陕西、山西、甘肃、吉林、宁夏、青海、 新疆、西藏、内蒙古 | 河北、四川 |
Table 5
Regression results of spatial and temporal effects of forestry labor productivity in China"
变量 variable | 无时空效应(模型1) no spatio-temporal effect (model 1) | 时间效应(模型2) temporal effect (model 2) | 空间效应(模型3) spatial effect (model 3) | 时空效应(模型4) spatio-temporal effect (model 4) | 时空效应(模型5) spatio-temporal effect (model 5) |
---|---|---|---|---|---|
L_lnY(τ) | 0.290 4***(10.00) | 0.286 2***(10.56) | 0.286 5***(10.59) | ||
W×lnY(ρ) | 0.460 9***(4.14) | 0.245 5(1.10) | 0.179 3(1.28) | ||
W×L_lnY(η) | 0.359 7***(3.04) | 0.363 1***(3.56) | |||
lnCLR(β1) | 0.022 3(0.58) | 0.002 0(0.06) | -0.033 4(-0.97) | -0.035 2(-1.10) | -0.023 2(-0.75) |
lnFLR(β2) | 0.443 0***(7.06) | 0.430 3***(8.02) | 0.492 2***(8.18) | 0.544 1***(10.24) | 0.543 5***(10.62) |
AGG(β3) | 0.242 2***(5.98) | 0.166 2***(4.54) | 0.289 5***(8.49) | 0.169 1***(5.06) | 0.170 1***(5.12) |
ISO(β4) | -0.041 9(-0.40) | 0.103 0(1.17) | 0.059 4(0.66) | 0.137 7*(1.82) | 0.159 9**(2.16) |
lnREM(β5) | 0.188 7***(4.69) | 0.095 1***(2.63) | 0.133 2***(2.78) | 0.165 0***(3.62) | 0.156 4***(3.49) |
TE(β6) | 0.503 7***(19.85) | 0.282 2***(10.53) | 0.380 6***(14.08) | 0.249 4***(9.65) | 0.237 0***(10.29) |
PE(β7) | 0.310 5***(10.10) | 0.233 1***(8.27) | 0.286 0***(9.87) | 0.211 6***(8.17) | 0.205 6***(8.40) |
SE(β8) | 1.029 9***(17.24) | 0.857 6***(16.08) | 1.033 3***(19.90) | 0.819 7***(16.76) | 0.810 7***(17.04) |
W×lnCLR(θ1) | -0.437 6***(-2.60) | -0.298 9*(-1.88) | -0.165 7**(-2.22) | ||
W×lnFLR(θ2) | 0.175 9(0.81) | 0.150 4(0.73) | |||
W×AGG(θ3) | 0.031 5(0.11) | -0.148 5(-0.50) | |||
W×ISO(θ4) | -0.485 4*(-1.67) | -0.266 4(-1.09) | |||
W×lnREM(θ5) | 0.022 0(0.19) | -0.408 0***(-3.53) | -0.446 6***(-6.15) | ||
W×TE(θ6) | 0.118 9(1.09) | 0.378 1***(2.78) | 0.321 1***(3.38) | ||
W×PE(θ7) | -0.384 6***(-2.68) | 0.022 4(0.12) | |||
W×SE(θ8) | -0.475 4*(-1.73) | 0.994 3**(2.46) | 0.882 7***(2.90) | ||
R2 | 0.941 2 | 0.955 0 | 0.958 2 | 0.963 6 | 0.963 7 |
F | 603.83*** | 637.40*** | |||
对数似然值 Log likelihood | 317.65 | 356.35 | 355.26 | ||
Hausman检测 Hausman test | 30.03*** | 206.96*** | -13.55 |
Table 6
Decomposition results of the spatial and temporal effects of factors influencing forestry labor productivity in China"
变量 variable | 短期效应short-term effect | 长期效应long-term effect | ||||
---|---|---|---|---|---|---|
直接效应 direct effect | 间接效应 indirect effect | 总效应 total effect | 直接效应 direct effect | 间接效应 indirect effect | 总效应 total effect | |
lnCLR | -0.019 0 (-0.65) | -0.143 0** (-1.99) | -0.162 0* (-1.95) | -0.033 7 (-0.79) | -0.3630 (-1.57) | -0.396 7 (-1.57) |
lnFLR | 0.540 6*** (11.39) | -0.074 7 (-1.32) | 0.465 9*** (6.46) | 0.762 7*** (11.18) | 0.350 2 (1.02) | 1.112 9*** (3.01) |
AGG | 0.169 1*** (5.46) | -0.023 2 (-1.26) | 0.145 9*** (4.40) | 0.238 6*** (5.42) | 0.110 6 (0.97) | 0.349 2*** (2.60) |
ISO | 0.164 5** (2.24) | -0.023 7 (-1.07) | 0.140 8** (2.18) | 0.231 9** (2.24) | 0.100 8 (0.87) | 0.332 7* (1.82) |
lnREM | 0.159 8*** (3.44) | -0.406 2*** (-5.62) | -0.246 4*** (-4.01) | 0.208 1*** (3.23) | -0.792 1*** (-3.81) | -0.584 0*** (-2.76) |
TE | 0.233 3*** (10.12) | 0.236 3*** (3.95) | 0.469 6*** (8.07) | 0.340 6*** (10.14) | 0.758 4*** (3.19) | 1.099 0*** (4.42) |
PE | 0.208 0*** (8.84) | -0.029 0 (-1.30) | 0.179 0*** (6.18) | 0.293 4*** (8.82) | 0.133 4 (1.00) | 0.426 8*** (2.99) |
SE | 0.805 2*** (16.25) | 0.627 6*** (3.38) | 1.432 8*** (7.77) | 1.166 9*** (16.11) | 2.174 7*** (3.20) | 3.341 6*** (4.75) |
[1] | 宁攸凉, 李岩, 马一博, 等. 我国林业产业发展面临的挑战与对策[J]. 世界林业研究, 2021, 34(4):67-71. |
NING Y L, LI Y, MA Y B, et al. Challenges and countermeasures of forestry industry development in China[J]. World For Res, 2021, 34(4):67-71.DOI: 10.13348/j.cnki.sjlyyj.2021.0022.y. | |
[2] | NING Y L, LIU Z, NING Z K, et al. Measuring eco-efficiency of state-owned forestry enterprises in northeast China[J]. Forests, 2018, 9(8):455.DOI: 10.3390/f9080455. |
[3] | NING Y L, YU J N, ZHANG H, et al. Exploring the sources of labor productivity growth and convergence among state-owned forestry enterprises in northeast China[J]. For Prod J, 2020, 70(3):249-255.DOI: 10.13073/fpj-d-19-00024. |
[4] | 夏永红, 沈文星, 李存芳. 木材加工产业集聚对劳动生产率影响的空间效应分解:基于1998—2016年省际空间面板数据的实证研究[J]. 林业科学, 2019, 55(9):157-165. |
XIA Y H, SHEN W X, LI C F. The spatial effects decomposition of industrial agglomeration on labor productivity in the wood processing industry:an empirical study based on 1998-2016 spatial panel data[J]. Sci Silvae Sin, 2019, 55(9):157-165.DOI: 10.11707/j.1001-7488.20190917. | |
[5] | 王坤, 马国勇. 林业劳动生产率的区域差异及收敛性研究[J]. 求是学刊, 2022, 49(3):92-101. |
WANG K, MA G Y. Research on regional differences and convergence of forestry labor productivity[J]. Seek Truth, 2022, 49(3):92-101.DOI: 10.19667/j.cnki.cn23-1070/c.2022.03.010. | |
[6] | TOTH D, MAITAH M, MAITAH K. Development and forecast of employment in forestry in the Czech republic[J]. Sustainability, 2019, 11(24):6901.DOI: 10.3390/su11246901. |
[7] | MANAGI S. Productivity measures and effects from subsidies and trade:an empirical analysis for Japan’s forestry[J]. Appl Econ, 2010, 42(30):3871-3883.DOI: 10.1080/00036840802360146. |
[8] | GRZEGORZEWSKA E, SEDLIACIKOVÁ M. Labour productivity in the sustainable development of wood-based industry:a case for the European Union countries[J]. BioResources, 2021, 16(2):3643-3661.DOI: 10.15376/biores.16.2.3643-3661. |
[9] | SILAYO D S, KIPARU S S, MAUYA E W, et al. Working conditions and productivity under private and public logging companies in Tanzania[J]. Croat J For Eng, 2010, 31(1):65-74. |
[10] | 夏永红, 沈文星. 木材加工产业集聚、共聚与劳动生产率效应[J]. 南京林业大学学报(自然科学版), 2019, 43(3):131-136. |
XIA Y H, SHEN W X. Agglomeration,coagglomeration and labor productivity effects of wood processing industry[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(3):131-136.DOI: 10.3969/j.issn.1000-2006.201805058. | |
[11] | NGUYEN MINH D, SHEN Y, ZHANG Y, et al. Logging productivity and production function in Alabama,1995 to 2000[J]. For Prod J, 2009, 59(7-8): 22-26.DOI: 10.1002/mrd.10241. |
[12] | EKERS M. ‘Pounding dirt all day’:labor,sexuality and gender in the British Columbia reforestation sector[J]. Gend Place Cult, 2013, 20(7):876-895.DOI: 10.1080/0966369x.2012.737768. |
[13] | RATNASINGAM J, YI L Y, AZIMN A, et al. Assessing the awareness and readiness of the Malaysian furniture industry for Industry 4.0[J]. BioResources, 2020, 15(3):4866-4885.DOI: 10.15376/biores.15.3.4866-4885. |
[14] | HITKA M, POTKANY Y, SIROTIAKOVA M. Proposal of assessment of wood processing company employees[J]. Drewno, 2009, 52(182):91-102.DOI: 10.1007/s00226-008-0200-y. |
[15] | 袁富华. 劳动生产率:关联与差异:基于GWR模型的分析[J]. 经济学, 2011, 11(2):709-734. |
YUAN F H. Correlations and deviations in regional labor productivity:based on geographically weighted regressions[J]. China Econ Q, 2011, 11(2):709-734.DOI: 10.13821/j.cnki.ceq.2011.02.002. | |
[16] | 柯文前, 陆玉麒, 俞肇元, 等. 江苏县域劳动生产率的空间关联与分异演化格局[J]. 经济地理, 2013, 33(12):24-30. |
KE W Q, LU Y Q, YU Z Y, et al. The spatial correlations and deviations evolution pattern in Jiangsu county labor productivity[J]. Econ Geogr, 2013, 33(12):24-30.DOI: 10.15957/j.cnki.jjdl.2013.12.014. | |
[17] | 文高辉, 刘蒙罢, 胡贤辉. 耕地细碎化对农户劳动生产率影响的空间计量分析[J]. 中国农业资源与区划, 2021, 42(2):167-175. |
WEN G H, LIU M B, HU X H. Spatial econometric analysis of the impact of cultivated land fragmentation on farmers’ labor productivity[J]. Chin J Agric Resour Reg Plan, 2021, 42(2):167-175.DOI: 10.7621/cjarrp.1005-9121.20210220. | |
[18] | 韩国莹, 刘同山. 空气质量对劳动生产率的影响:基于森林资源的调节效应[J]. 农林经济管理学报, 2021, 20(5):640-648. |
HAN G Y, LIU T S. Effect of air quality on labor productivity:based on the moderating effect of forest resources[J]. J Agro For Econ Manag, 2021, 20(5):640-648.DOI: 10.16195/j.cnki.cn36-1328/f.2021.05.66. | |
[19] | 罗能生, 王玉泽. 财政分权、环境规制与区域生态效率:基于动态空间杜宾模型的实证研究[J]. 中国人口·资源与环境, 2017, 27(4):110-118. |
LUO N S, WANG Y Z. Fiscal decentralization,environmental regulation and regional eco-efficiency:based on the dynamic spatial Durbin model[J]. China Popul Resour Environ, 2017, 27(4):110-118.DOI: 10.12062/cpre.20170327. | |
[20] | 陈菁菁, 李颂, 丁胜. 基于空间视角的我国经济林产业集聚分析[J]. 南京林业大学学报(自然科学版), 2023, 47(2):159-166. |
CHEN J J, LI S, DING S. Analysis on industrial agglomeration of China’s non-wood forest based on spatial perspectives[J]. J Nanjing For Univ (Nat Sci Ed), 2023, 47(2):159-166.DOI: 10.12302/j.issn.1000-2006.202108048. | |
[21] | ANSELIN L, SYABRI I, SMIRNOV O. Visualizing multivariate spatial correlation with dynamically linked windows[C]//The Annual Meetings of the Association of American Geographers. New Tools for Spatial Data Analysis:Proceedings of the Specialist Meeting. California: University of California Santa Barbara,2002: 1-20. |
[22] | 王伟, 纪翌佳, 金凤君. 基于动态空间面板模型的中国港口竞争与合作关系研究[J]. 地理研究, 2022, 41(3):616-632. |
WANG W, JI Y J, JIN F J. The competition and cooperation relationship of Chinese ports based on dynamic spatial panel model[J]. Geogr Res, 2022, 41(3):616-632.DOI: 10.11821/dlyj020210052. | |
[23] | 王国定, 陈祥, 孔欢. 城乡收入差距与人口老龄化的时空关联:基于动态空间面板模型的实证分析[J]. 经济问题, 2022(7):44-53. |
WANG G D, CHEN X, KONG H. Temporal and spatial relationship of urban-rural income gap and population aging:an empirical analysis based on dynamic spatial panel model[J]. Econ Probl, 2022(7):44-53.DOI: 10.16011/j.cnki.jjwt.2022.07.015. | |
[24] | 张娇, 宁攸凉. 中国林业科技进步贡献率测算分析:2000—2015年[J]. 林业经济, 2018, 40(11):90-95. |
ZHANG J, NING Y L. Calculation and analysis on contribution rate of forestry science and technology progress in China:2000—2015[J]. For Econ, 2018, 40(11):90-95.DOI: 10.13843/j.cnki.lyjj.2018.11.015. | |
[25] | 吴延瑞. 生产率对中国经济增长的贡献:新的估计[J]. 经济学, 2008, 8(3):827-842. |
WU Y R. The role of productivity in China’s growth:new estimates[J]. China Econ Q, 2008, 8(3):827-842. | |
[26] | 平瑛, 施文杰. 农产品加工业集聚、空间溢出与农业高质量发展[J]. 中国农业资源与区划, 2023, 44(3):155-167. |
PING Y, SHI W J. Agglomeration,spatial spillover of agro-processing industry and high-quality agricultural development[J]. Chin J Agric Resour Reg Plan, 2023, 44(3):155-167.DOI: 10.7621/cjarrp.1005-9121.20230316. | |
[27] | 李朝洪, 韦唯, 姜钰. 黑龙江省天保工程区绩效评价及其障碍因子甄别[J]. 南京林业大学学报(自然科学版), 2022, 46(5):201-212. |
LI C H, WEI W, JIANG Y. Performance evaluation and obstacle factor screening of Natural Forest Protection Project area in Heilongjiang Province[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(5):201-212.DOI: 10.12302/j.issn.1000-2006.202106010. | |
[28] | 黄大湖, 丁士军. 农业技术进步、空间效应与城乡收入差距:基于省级面板数据的分析[J]. 中国农业资源与区划, 2022, 43(11):239-248. |
HUANG D H, DING S J. Agricutural technology progress,spatial effect and urban-rural income gap: based on the analysis of provincial panel date[J]. Chin J Agric Resour Reg Plan, 2022, 43(11):239-248.DOI: 10.7621/cjarrp.1005-9121.20221123. | |
[29] | 盛艳燕. 实际工资影响劳动生产率的空间关联性研究[J]. 文山学院学报, 2019, 32(3):74-80. |
SHENG Y Y. Spatial correlation of real wages affecting productivity[J]. J Wenshan Univ, 2019, 32(3):74-80.DOI: 10.3969/j.issn.1674-9200.2019.03.018. | |
[30] | 陈勇吏, 李经, 魏下海. 最低工资标准影响劳动力空间配置吗?基于地方政府竞争视角的分析[J]. 财经研究, 2022, 48(10):108-122. |
CHEN Y L, LI J, WEI X H. Does the minimum wage standard affect the spatial allocation of labor force?A perspective of local government competition[J]. J Finance Econ, 2022, 48(10):108-122.DOI: 10.16538/j.cnki.jfe.20220615.301. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||