JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (1): 28-36.doi: 10.12302/j.issn.1000-2006.202304018
Special Issue: 专题报道:松材线虫病绿色防控研究
Previous Articles Next Articles
LI Zichun(), HAO Dejun*(
), LI Hui, LI Changyan, XU Danwenyi, YANG Hualei, ZHAO Peiyuan
Received:
2023-04-10
Revised:
2024-02-02
Online:
2025-01-30
Published:
2025-01-21
Contact:
HAO Dejun
E-mail:leezichun@njfu.edu.cn;dejunhao@163.com
CLC Number:
LI Zichun, HAO Dejun, LI Hui, LI Changyan, XU Danwenyi, YANG Hualei, ZHAO Peiyuan. Cloning of glutathione S-transferases gene from Monochamus alternatus and its expression characteristics under heat stress[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 28-36.
Table 1
Amplification efficiency of qPCR primers"
引物名称 primer name | 引物序列(5'-3') primer sequence | 相关 系数(R2) correlation coefficient | 扩增效率/% amplification efficiency |
---|---|---|---|
GAPDH-qF | TCGAACGCTTCATGCACAAC | 0.99 | 1.09 |
GAPDH-qR | CCATCACGCCACAAATTTTCC | ||
MaltGSTe-1-qF | AACGTACTAGTGCCCATCGC | 0.99 | 1.10 |
MaltGSTe-1-qR | AGCCTACTTGATTGGCCTCG | ||
MaltGSTe-2-qF | ATACCAGCCCTGGACGACAA | 0.99 | 1.03 |
MaltGSTe-2-qR | GCTTTTCAACATCGGCAGGA | ||
MaltGSTt-1-qF | ATATGCTGCCGGAGATCACG | 1.00 | 1.09 |
MaltGSTt-1-qR | ACCAGCTTTGGACAAGAGGAT |
Table 2
Primers used in this study"
引物名称 primer name | 引物序列(5'-3') primer sequence |
---|---|
MaltGSTe-1-F① | ATGGCGCCTAAATTACACTACG |
MaltGSTe-1-R① | TCAACCAAGCTTGCTCTTGAC |
MaltGSTe-2-F① | ATGGCTCCAAAGTTATATATGACA |
MaltGSTe-2-R① | TTACGTGGATAATGCATTTTGAACT |
MaltGSTt-1-F① | ATGCCACTAACATTATATGCTGT |
MaltGSTt-1-R① | TTATTTTCTAATGGGGTGAATGGGA |
MaltGSTe-1-tF② | cagcaaatgggtcgcggatccATGGCGCCTAAATTACACTACGC |
MaltGSTe-1-tR② | ctcgagtgcggccgcaagcttACCAAGCTTGCTCTTGACCATT |
MaltGSTe-2-tF② | cagcaaatgggtcgcggatccATGGCTCCAAAGTTATATATGACAATAA |
MaltGSTe-2-tR② | ctcgagtgcggccgcaagcttCGTGGATAATGCATTTTGAACTAGT |
MaltGSTt-1-tF② | cagcaaatgggtcgcggatccATGCCACTAACATTATATGCTGTATCTG |
MaltGSTt-1-tR② | ctcgagtgcggccgcaagcttTTTTCTAATGGGGTGAATGGGA |
[1] | GARRAD R, BOOTH D T, FURLONG M J. The effect of rearing temperature on development, body size, energetics and fecundity of the diamondback moth[J]. Bull Entomol Res, 2016, 106(2): 175-181. DOI: 10.1017/S000748531500098X. |
[2] | 钱雪, 王月莹, 谢欢欢, 等. 温度对西伯利亚蝗呼吸代谢关键酶活性的影响[J]. 昆虫学报, 2017, 60(5): 499-504. |
QIAN X, WANG Y Y, XIE H H, et al. Effects of temperature on the activities of key enzymes related to respiratory metabolism in adults of Gomphocerus sibiricus (Orthoptera: Acrididae)[J]. Acta Entomol Sin, 2017, 60(5): 499-504. DOI: 10.16380/j.kcxb.2017.05.001. | |
[3] | TURRENS J F. Mitochondrial formation of reactive oxygen species[J]. J Physiol, 2003, 552(2): 335-344. DOI: 10.1113/jphysiol.2003.049478. |
[4] | HALLIWELL B. Antioxidants: the basics, what they are and how to evaluate them[J]. Adv Pharmacol, 1996, 38: 3-20. DOI: 10.1016/s1054-3589(08)60976-x. |
[5] | SLIMEN I B, NAJAR T, GHRAM A, et al. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage: a review[J]. Int J Hyperthermia, 2014, 30(7): 513-523. DOI: 10.3109/02656736.2014.971446. |
[6] | HABASHY W S, MILFORT M C, REKAYA R, et al. Cellular antioxidant enzyme activity and biomarkers for oxidative stress are affected by heat stress[J]. Int J Biometeorol, 2019, 63(12): 1569-1584. DOI: 10.1007/s00484-019-01769-z. |
[7] | 李慧, 郝德君, 徐天, 等. 高温胁迫对植食性昆虫影响研究进展[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 215-224. |
LI H, HAO D J, XU T, et al. The effects of heat stress on herbivorous insects: an overview and future directions[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(6): 215-224. DOI: 10.12302/j.issn.1000-2006.202209041. | |
[8] | RIX R R, CUTLER G C. Review of molecular and biochemical responses during stress induced stimulation and hormesis in insects[J]. Sci Total Environ, 2022, 827: 154085. DOI: 10.1016/j.scitotenv.2022.154085. |
[9] | ZHANG S Z, FU W Y, LI N, et al. Antioxidant responses of Propylaea japonica (Coleoptera: Coccinellidae) exposed to high temperature stress[J]. J Insect Physiol, 2015, 73: 47-52. DOI: 10.1016/j.jinsphys.2015.01.004. |
[10] | KANG Z W, LIU F H, LIU X, et al. The potential coordination of the heat-shock proteins and antioxidant enzyme genes of Aphidius gifuensis in response to thermal stress[J]. Front Physiol, 2017, 8: 976. DOI: 10.3389/fphys.2017.00976. |
[11] | MOREIRA D C, PAULA D P, HERMES-LIMA M. Changes in metabolism and antioxidant systems during tropical diapause in the sunflower caterpillar Chlosyne lacinia (Lepidoptera: Nymphalidae)[J]. Insect Biochem Mol Biol, 2021, 134: 103581. DOI: 10.1016/j.ibmb.2021.103581. |
[12] | WANG Y J, QIU L, RANSON H, et al. Structure of an insect epsilon class glutathione S-transferase from the malaria vector Anopheles gambiae provides an explanation for the high DDT-detoxifying activity[J]. J Struct Biol, 2008, 164(2): 228-235. DOI: 10.1016/j.jsb.2008.08.003. |
[13] | OAKLEY A. Glutathione transferases: a structural perspective[J]. Drug Metab Rev, 2011, 43(2): 138-151. DOI: 10.3109/03602532.2011.558093. |
[14] | MANNERVIK B. Five decades with glutathione and the GSTome[J]. J Biol Chem, 2012, 287(9): 6072-6083. DOI: 10.1074/jbc.X112.342675. |
[15] | GALLÉ Á, BELA K, HAJNAL Á, et al. Crosstalk between the redox signalling and the detoxification:GSTs under redox control?[J]. Plant Physiol Biochem, 2021, 169: 149-159. DOI: 10.1016/j.plaphy.2021.11.009. |
[16] | HAYES J D, FLANAGAN J U, JOWSEY I R. Glutathione transferases[J]. Annu Rev Pharmacol Toxicol, 2005, 45: 51-88. DOI: 10.1146/annurev.pharmtox.45.120403.095857. |
[17] | RAZA H. Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications in oxidative stress, toxicity and disease[J]. FEBS J, 2011, 278(22): 4243-4251. DOI: 10.1111/j.1742-4658.2011.08358.x. |
[18] | LABORDE E. Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death[J]. Cell Death Differ, 2010, 17(9): 1373-1380. DOI: 10.1038/cdd.2010.80. |
[19] | ZHU G D, XUE M, LUO Y, et al. Effects of short-term heat shock and physiological responses to heat stress in two Bradysia adults, Bradysia odoriphaga and Bradysia difformis[J]. Sci Rep, 2017, 7(1): 13381. DOI: 10.1038/s41598-017-13560-4. |
[20] | ZHAO Y, LI Y Y, HE M, et al. Antioxidant responses of the pest natural enemy Hylyphantes graminicola (Araneae: Linyphiidae) exposed to short-term heat stress[J]. J Therm Biol, 2020, 87: 102477. DOI: 10.1016/j.jtherbio.2019.102477. |
[21] | ALVES M, PEREIRA A, MATOS P, et al. Bacterial community associated to the pine wilt disease insect vectors Monochamus galloprovincialis and Monochamus alternatus[J]. Sci Rep, 2016, 6: 23908. DOI: 10.1038/srep23908. |
[22] | TOGASHI K. Population density of Monochamus alternatus adults (Coleoptera: Cerambycidae) and incidence of pine wilt disease caused by Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae)[J]. Res Popul Ecol, 1988, 30(2): 177-192. DOI: 10.1007/BF02513243. |
[23] | 王立超, 陈凤毛, 董晓燕, 等. 松墨天牛取食和产卵特性研究[J]. 南京林业大学学报(自然科学版), 2023, 47(2): 219-224. |
WANG L C, CHEN F M, DONG X Y, et al. A study on feeding and oviposition characteristics of Monochamus alternatus[J]. J Nanjing For Univ (Nat Sci Ed), 2023, 47(2): 219-224. DOI: 10.12302/j.issn.1000-2006.202103022. | |
[24] | 陈宏健, 郝德君, 田敏, 等. 室内饲养松墨天牛幼虫不同肠段细菌的群落结构及功能分析[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 143-151. |
CHEN H J, HAO D J, TIAN M, et al. The community structure and functional analysis of intestinal bacteria in Monochamus alternatus larvae reared indoors[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(3): 143-151. DOI: 10.12302/j.issn.1000-2006.202004009. | |
[25] | 田开慧, 陈怡帆, 周宏威. 湖南湘西州马尾松毛虫和松材线虫病发生非线性建模与预测[J]. 森林工程, 2022, 38 (6): 38-44. |
TIAN K H, CHEN Y F, ZHOU H W. Prediction of occurrence trend of Dendrolimus punctatus and pine wilt disease in Xiangxi Prefecture[J]. For Eng, 2022, 38 (6): 38-44. | |
[26] | 王洋, 陈军, 陈凤毛, 等. 松墨天牛取食期间传播松材线虫的特性[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 1-10. |
WANG Y, CHEN J, CHEN F M, et al. Transmission of Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) through feeding activity of Monochamus alternatus (Coleoptera: Cerambycidae)[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(6): 1-10. DOI: 10.3969/j.issn.1000-2006.201903001. | |
[27] | ZHAO L L, ZHANG S, WEI W, et al. Chemical signals synchronize the life cycles of a plant-parasitic nematode and its vector beetle[J]. Curr Biol, 2013, 23(20): 2038-2043. DOI: 10.1016/j.cub.2013.08.041. |
[28] | OHSAWA M, AKIBA M. Possible altitude and temperature limits on pine wilt disease: the reproduction of vector sawyer beetles(Monochamus alternatus), survival of causal nematode (Bursaphelenchus xylophilus), and occurrence of damage caused by the disease[J]. Eur J For Res, 2014, 133(2): 225-233. DOI: 10.1007/s10342-013-0742-x. |
[29] | 吴佳雯, 尹艳楠, 谈家金, 等. 蜡样芽孢杆菌NJSZ-13菌株诱导马尾松抗松材线虫病研究[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 53-58. |
WU J W, YIN Y N, TAN J J, et al. A preliminary study on resistance of Pinus massoniana induced by Bacillus cereus NJSZ-13 strain to Bursaphelenchus xylophilus[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(4): 53-58. DOI: 10.12302/j.issn.1000-2006.202006051. | |
[30] | 杨帆, 零雅茗, 舒红, 等. 松材线虫Bx-TIMP克隆及功能研究[J]. 森林工程, 2022, 38 (2): 14-19. |
YANG F, LING Y M, SHU H, et al. Cloning and functional analysis of Bursaphelenchus xylophilus Bx-TIMP[J]. For Eng, 2022, 38 (2): 14-19. | |
[31] | 李慧, 何玄玉, 陶蓉, 等. 松墨天牛小热激蛋白基因的克隆、表达谱及对温度胁迫的响应[J]. 昆虫学报, 2018, 61(7): 749-760. |
LI H, HE X Y, TAO R, et al. cDNA cloning and expression profiling of small heat shock protein genes and their response to temperature stress in Monochamus alternatus(Coleoptera: Cerambycidae)[J]. Acta Entomol Sin, 2018, 61(7): 749-760. DOI: 10.16380/j.kcxb.2018.07.001. | |
[32] | LI H, QIAO H, LIU Y J, et al. Characterization, expression profiling, and thermal tolerance analysis of heat shock protein 70 in pine sawyer beetle,Monochamus alternatus Hope (Coleoptera: Cerambycidae)[J]. Bull Entomol Res, 2021, 111(2): 217-228. DOI: 10.1017/S0007485320000541. |
[33] | CAI Z L, CHEN J X, CHENG J, et al. Overexpression of three heat shock proteins protects Monochamus alternatus (Coleoptera: Cerambycidae) from thermal stress[J]. J Insect Sci, 2017, 17(6): 113. DOI: 10.1093/jisesa/iex082. |
[34] | 李慧. 热激蛋白在松墨天牛响应高温胁迫中的功能研究[D]. 南京: 南京林业大学, 2021. |
LI H. Function analysis of heat shock protein in Monochamus alternatus response to high temperature[D]. Nanjing: Nanjing For Univ, 2021. DOI: 10.27242/d.cnki.gnjlu.2021.000015. | |
[35] | LI H, ZHAO X Y, QIAO H, et al. Comparative transcriptome analysis of the heat stress response in Monochamus alternatus Hope (Coleoptera: Cerambycidae)[J]. Front Physiol, 2020, 10: 1568. DOI: 10.3389/fphys.2019.01568. |
[36] | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR[J]. Methods, 2002, 25(4): 402-408. DOI: 10.1006/meth.2001.1262. |
[37] | RAJARAPU S P, MAMIDALA P, HERMS D A, et al. Antioxidant genes of the emerald ash borer(Agrilus planipennis): gene characterization and expression profiles[J]. J Insect Physiol, 2011, 57(6): 819-824. DOI: 10.1016/j.jinsphys.2011.03.017. |
[38] | SANDAMALIKA W M G, PRIYATHILAKA T T, LEE S, et al. Immune and xenobiotic responses of glutathione S-Transferase theta (GST-θ) from marine invertebrate disk abalone (Haliotis discus discus): with molecular characterization and functional analysis[J]. Fish Shellfish Immunol, 2019, 91: 159-171. DOI: 10.1016/j.fsi.2019.04.004. |
[39] | SUN L L, YIN J J, DU H, et al. Characterisation of GST genes from the Hyphantria cunea and their response to the oxidative stress caused by the infection of Hyphantria cunea nucleopolyhedrovirus (HcNPV)[J]. Pestic Biochem Physiol, 2020, 163: 254-262. DOI: 10.1016/j.pestbp.2019.11.019. |
[40] | 李长春, 宁青, 戴余军, 等. 拟环纹豹蛛谷胱甘肽S-转移酶基因的克隆及表达分析[J]. 江苏农业学报, 2019, 35(5): 1068-1074. |
LI C C, NING Q, DAI Y J, et al. Cloning and expression analysis of glutathione S-transferase gene in Pardosa pseudoannulata[J]. Jiangsu J Agri Sci, 2019, 35(5): 1068-1074. DOI: 10.3969/j.issn.1000-4440.2019.05.010. | |
[41] | YANG Q, LIU J P, WYCKHUYS K A G, et al. Impact of heat stress on the predatory ladybugs Hippodamia variegata and Propylaea quatuordecimpunctata[J]. Insects, 2022, 13(3): 306. DOI: 10.3390/insects13030306. |
[42] | YANG X J, ZHENG H L, LIU Y Y, et al. Selection of reference genes for quantitative real-time PCR in Aquatica leii (Coleoptera: Lampyridae) under five different experimental conditions[J]. Front Physiol, 2020, 11: 555233. DOI: 10.3389/fphys.2020.555233. |
[43] | 张媛英. 中华蜜蜂谷胱甘肽S-转移酶和小分子热激蛋白基因的生物学功能分析[D]. 泰安: 山东农业大学, 2014. |
ZHANG Y Y. Biological analysis of glutathione S-transferase and small heat shock protein genes in Apis cerana cerana[D]. Tai’an: Shandong Agricul Univ, 2014. DOI: 10.7666/d.Y2587648. |
[1] | WANG Lulu, GENG Xingmin, HUAN Zhiqun, XU Shida, ZHAO Hui. Effects of 1-MCP pretreatment on photosynthetic characteristics and related gene expression of rhododendron seedlings under heat stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 103-113. |
[2] | WANG Lichao, CHEN Fengmao, DONG Xiaoyan, TIAN Chenglian, WANG Yang. A study on feeding and oviposition characteristics of Monochamus alternatus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 219-224. |
[3] | JIA Zhanhui, JIA Xiaodong, XU Mengyang, MO Zhenghai, ZHAI Min, XUAN Jiping, ZHANG Jiyu, WANG Gang, WANG Tao, GUO Zhongren. Cloning and expression analyses of the key enzyme gene of procyanidins biosynthesis in pecan (Carya illinoinensis) [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 49-57. |
[4] | WANG Lichao, SU Shengrong, CHEN Fengmao, DONG Xiaoyan, TIAN Chenglian, WANG Yang. Preliminary investigations of vector beetle and nematode species in Pinus massoniana forest in Huangshan City [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 29-35. |
[5] | WANG Lei, YE Jianren, SHI Lina. A study on the use of saprophytic nematodes to accelerate the replacement of Bursaphelenchus xylophilus in infected trees [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 36-44. |
[6] | CHEN Hongjian, HAO Dejun, TIAN Min, ZHOU Yang, XIA Xiaohong, ZHAO Xinyi, QIAO Heng, TAN Jiajin. The community structure and functional analysis of intestinal bacteria in Monochamus alternatus larvae reared indoors [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 143-151. |
[7] | ZHANG Tengqian, ZHANG Weixi, DING Changjun, ZHANG Jing, HU Zanmin, SU Xiaohua. Cloning and expression characteristics of PdMODD genes in Populus × euramericana [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 43-50. |
[8] | WANG Yang, CHEN Jun, CHEN Fengmao, ZHOU Quan, ZHOU Lifeng, SUN Shouhui. Transmission of Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae) through feeding activity of Monochamus alternatus (Coleoptera: Cerambycidae) [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 1-10. |
[9] | ZHU Youpeng, LIU Hongli, HAN Changzhi. Prediction of secretory protein in walnut bacterial black spot pathogen [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(03): 17-22. |
[10] | YANG Jie, SUN Lu, WANG Siyao, LI Ying, ZHAI Rui, LIN Xiangyu, ZHAN Yaguang, YIN Jing. Tissue specificity and hormone induced expression of three cytochrome P450 genes from Betula platyphylla Suk [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(06): 27-34. |
[11] | LIU Hailin, YIN Tongming. Progress on the whole genome sequencing and the application in woody plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(05): 172-178. |
[12] | DONG Jingxiang, REN Li, ZHANG Yuan, YANG Yang, HUANG Haijiao, LI Huiyu. Bioinformatics and expression analysis of BpTCPs in Betula platyphylla Suk. [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(04): 113-118. |
[13] | NING Kun, SONG Xin, LI Huiyu. Cloning and expression analysis of ThGF14 gene in Tamarix hispida [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(02): 33-40. |
[14] | ZHOU Shan, ZHAN Yaguang, DONG Heng, LIU Jingjing, ZENG Fansuo. Bioinformation and expression pattern analysis of FmGT8 gene family in Fraxinus mandshurica [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(02): 27-32. |
[15] | ZHANG Tong,ZHOU Yanni,LI Changjiang,ZHANG Lingyun. Cloning and expression analysis of WrbA gene from Picea wilsonii [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(04): 34-38. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||