JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (3): 95-102.doi: 10.12302/j.issn.1000-2006.202405028
Previous Articles Next Articles
ZHANG Yijun(), ZHANG Zipeng, JIANG Lichun*(
)
Received:
2024-05-20
Accepted:
2024-07-01
Online:
2025-05-30
Published:
2025-05-27
Contact:
JIANG Lichun
E-mail:1751580673@qq.com;jlichun@nefu.edu.cn
CLC Number:
ZHANG Yijun, ZHANG Zipeng, JIANG Lichun. Effects of different form quotients on prediction accuracy of individual tree volume of Larix gmelinii[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(3): 95-102.
Table 1
Survey statistics for Larix gmelinii sample trees"
样本 sample | 统计量 statistic | 胸径/cm DBH | 树高/m height | 材积/m3 volume |
---|---|---|---|---|
建模样本 fitting sample | 最大值max | 63.40 | 29.50 | 3.48 |
最小值min | 6.00 | 8.40 | 0.01 | |
平均值mean | 30.86 | 19.32 | 0.89 | |
标准差SD | 12.57 | 3.98 | 0.72 | |
检验样本 validation sample | 最大值max | 50.80 | 29.80 | 3.48 |
最小值min | 8.60 | 8.40 | 0.01 | |
平均值mean | 30.90 | 19.31 | 0.83 | |
标准差SD | 11.99 | 4.02 | 0.58 |
Table 2
Model parameter values and fit indicator values based on breast height form quotient"
形率 form quotient | a0 | a1 | a2 | a3 | RMSE | R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ⅱ | Ⅲ | Ⅱ | Ⅲ | Ⅱ | Ⅲ | Ⅲ | Ⅱ | Ⅲ | Ⅱ | Ⅲ | |
q0 | 0.000 5 | 0.000 06 | 2.140 7 | 1.776 2 | -0.218 8 | 1.130 1 | 0.303 5 | 0.109 5 | 0.109 5 | 0.967 4 | 0.967 4 |
q0.02 | 0.000 4 | 0.000 05 | 2.142 0 | 1.779 0 | -0.287 9 | 1.168 6 | 0.061 7 | 0.111 6 | 0.111 5 | 0.966 2 | 0.966 2 |
q0.04 | 0.000 5 | 0.000 08 | 2.139 5 | 1.792 7 | -1.234 2 | 1.026 0 | 0.984 5 | 0.160 3 | 0.108 4 | 0.946 7 | 0.968 1 |
q0.06 | 0.000 4 | 0.000 02 | 2.143 0 | 1.817 6 | -0.415 5 | 1.411 3 | 1.950 3 | 0.167 1 | 0.105 9 | 0.942 1 | 0.969 5 |
q0.08 | 0.000 4 | 0.000 03 | 2.185 3 | 1.844 5 | 1.321 9 | 1.229 4 | 1.657 2 | 0.161 2 | 0.102 9 | 0.946 1 | 0.971 3 |
q0.1 | 0.000 4 | 0.000 04 | 2.175 9 | 1.915 6 | 1.802 9 | 1.125 6 | 2.228 7 | 0.149 9 | 0.085 9 | 0.963 5 | 0.980 0 |
q0.15 | 0.000 5 | 0.000 04 | 2.167 8 | 1.882 2 | 1.426 7 | 1.155 3 | 1.979 7 | 0.147 2 | 0.070 0 | 0.955 1 | 0.986 7 |
q0.2 | 0.000 5 | 0.000 05 | 1.921 9 | 1.889 0 | -0.218 9 | 1.111 5 | 1.410 6 | 0.165 9 | 0.067 4 | 0.943 0 | 0.987 7 |
q0.3 | 0.000 5 | 0.000 05 | 2.173 1 | 1.915 2 | 1.128 5 | 1.096 9 | 1.191 5 | 0.126 4 | 0.056 6 | 0.966 9 | 0.991 3 |
q0.4 | 0.000 5 | 0.000 07 | 2.204 3 | 1.959 0 | 1.074 9 | 0.925 9 | 0.952 0 | 0.113 0 | 0.055 9 | 0.973 5 | 0.991 5 |
q0.5 | 0.000 4 | 0.000 08 | 2.246 0 | 1.983 5 | 0.980 4 | 0.866 5 | 0.891 4 | 0.096 1 | 0.053 4 | 0.980 9 | 0.992 3 |
q0.6 | 0.000 4 | 0.000 08 | 2.265 1 | 1.993 7 | 0.762 5 | 0.886 1 | 0.697 9 | 0.105 2 | 0.057 5 | 0.977 1 | 0.991 0 |
q0.7 | 0.000 5 | 0.000 06 | 2.237 6 | 1.961 5 | 0.555 4 | 1.012 4 | 0.571 4 | 0.117 0 | 0.070 4 | 0.971 6 | 0.986 5 |
q0.8 | 0.000 5 | 0.000 05 | 2.198 3 | 1.924 2 | 0.313 5 | 1.083 2 | 0.334 8 | 0.137 8 | 0.082 0 | 0.960 7 | 0.981 7 |
q0.9 | 0.000 5 | 0.000 05 | 2.163 0 | 1.889 0 | 0.171 9 | 1.111 5 | 1.410 7 | 0.151 8 | 0.089 0 | 0.952 3 | 0.978 5 |
Table 3
Model parameter values and fit indicator values based on normal form quotient"
形率 form quotient | a0 | a1 | a2 | a3 | RMSE | R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ⅱ | Ⅲ | Ⅱ | Ⅲ | Ⅱ | Ⅲ | Ⅲ | Ⅱ | Ⅲ | Ⅱ | Ⅲ | |
q0 | 0.000 5 | 0.000 05 | 2.179 0 | 1.895 6 | -0.328 4 | 1.082 9 | -0.350 4 | 0.168 0 | 0.131 3 | 0.943 2 | 0.965 4 |
q0.02 | 0.000 5 | 0.000 05 | 2.180 5 | 1.922 7 | -0.552 7 | 0.985 7 | -0.404 3 | 0.164 8 | 0.133 2 | 0.945 3 | 0.964 3 |
q0.04 | 0.000 5 | 0.000 08 | 2.188 0 | 1.972 7 | -1.602 9 | 0.805 2 | -1.221 6 | 0.142 1 | 0.118 9 | 0.959 4 | 0.971 5 |
q0.06 | 0.000 5 | 0.000 07 | 2.156 0 | 1.923 5 | -2.581 5 | 0.914 9 | -2.220 2 | 0.141 6 | 0.110 9 | 0.959 7 | 0.975 2 |
q0.08 | 0.000 4 | 0.000 05 | 2.164 1 | 1.902 0 | -3.227 3 | 1.027 6 | -3.105 1 | 0.154 6 | 0.115 8 | 0.952 0 | 0.973 0 |
q0.15 | 0.000 5 | 0.000 03 | 2.157 2 | 1.802 2 | 1.771 3 | 1.360 9 | 3.440 0 | 0.167 6 | 0.110 2 | 0.943 5 | 0.975 6 |
q0.2 | 0.000 5 | 0.000 03 | 2.191 7 | 1.921 2 | 1.736 0 | 1.079 8 | 1.891 1 | 0.151 3 | 0.106 1 | 0.953 9 | 0.977 3 |
q0.3 | 0.000 5 | 0.000 07 | 2.182 6 | 1.938 7 | 1.333 4 | 0.943 7 | 1.295 6 | 0.136 9 | 0.095 5 | 0.962 3 | 0.981 6 |
q0.4 | 0.000 5 | 0.000 08 | 2.203 5 | 1.982 8 | 1.204 3 | 0.848 7 | 1.039 0 | 0.122 5 | 0.087 5 | 0.969 8 | 0.984 6 |
q0.5 | 0.000 4 | 0.000 10 | 2.251 8 | 2.058 1 | 1.016 5 | 0.672 8 | 0.853 7 | 0.105 4 | 0.081 1 | 0.977 6 | 0.986 8 |
q0.6 | 0.000 4 | 0.000 07 | 2.277 1 | 2.047 9 | 0.716 9 | 0.844 8 | 0.624 1 | 0.118 4 | 0.084 1 | 0.971 8 | 0.985 7 |
q0.7 | 0.000 4 | 0.000 05 | 2.250 0 | 1.994 0 | 0.494 1 | 1.018 4 | 0.476 8 | 0.137 1 | 0.094 6 | 0.962 2 | 0.982 0 |
q0.8 | 0.000 4 | 0.000 04 | 2.233 1 | 1.959 7 | 0.270 0 | 1.148 9 | 0.301 1 | 0.151 4 | 0.106 4 | 0.953 8 | 0.977 2 |
q0.9 | 0.000 5 | 0.000 03 | 2.193 2 | 1.894 8 | 0.125 8 | 1.280 4 | 0.192 2 | 0.165 0 | 0.115 1 | 0.945 2 | 0.973 3 |
Table 4
Model parameter values and fit indicator values based on ground form quotient"
形率 form quotient | a0 | a1 | a2 | a3 | RMSE | R2 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ⅱ | Ⅲ | Ⅱ | Ⅲ | Ⅱ | Ⅲ | Ⅲ | Ⅱ | Ⅲ | Ⅱ | Ⅲ | |
q0.02 | 0.000 4 | 0.000 04 | 2.186 0 | 1.891 5 | 0.069 3 | 1.111 9 | 2.295 6 | 0.173 6 | 0.136 7 | 0.939 4 | 0.962 4 |
q0.04 | 0.000 4 | 0.000 04 | 2.189 0 | 1.891 5 | -0.053 3 | 1.099 6 | 0.183 3 | 0.173 7 | 0.137 8 | 0.939 3 | 0.961 8 |
q0.06 | 0.000 4 | 0.000 04 | 2.185 6 | 1.900 9 | 0.148 5 | 1.081 8 | 0.227 9 | 0.172 9 | 0.136 7 | 0.939 8 | 0.962 4 |
q0.08 | 0.000 4 | 0.000 04 | 2.183 1 | 1.901 0 | 0.246 3 | 1.074 1 | 0.268 7 | 0.170 9 | 0.135 0 | 0.941 2 | 0.963 3 |
q0.1 | 0.000 5 | 0.000 05 | 2.179 0 | 1.895 6 | 0.328 4 | 1.082 9 | 0.350 4 | 0.168 0 | 0.131 2 | 0.943 2 | 0.965 4 |
q0.15 | 0.000 5 | 0.000 05 | 2.171 8 | 1.876 2 | 0.358 3 | 1.133 5 | 0.426 6 | 0.166 2 | 0.126 0 | 0.944 4 | 0.968 0 |
q0.2 | 0.000 5 | 0.000 05 | 2.177 0 | 1.891 9 | 0.387 2 | 1.101 1 | 0.419 6 | 0.161 9 | 0.122 4 | 0.947 2 | 0.969 8 |
q0.3 | 0.000 5 | 0.000 06 | 2.173 4 | 1.897 2 | 0.446 4 | 1.066 0 | 0.463 0 | 0.153 8 | 0.113 5 | 0.952 4 | 0.974 1 |
q0.4 | 0.000 6 | 0.000 06 | 2.181 2 | 1.918 4 | 0.521 9 | 1.021 6 | 0.508 8 | 0.142 4 | 0.102 2 | 0.959 2 | 0.979 0 |
q0.5 | 0.000 6 | 0.000 09 | 2.213 4 | 1.978 9 | 0.636 5 | 0.870 2 | 0.572 6 | 0.121 0 | 0.086 3 | 0.970 5 | 0.985 1 |
q0.6 | 0.000 5 | 0.000 07 | 2.245 0 | 1.998 8 | 0.549 4 | 0.937 2 | 0.500 5 | 0.121 1 | 0.081 7 | 0.970 4 | 0.986 5 |
q0.7 | 0.000 5 | 0.000 05 | 2.234 9 | 1.969 2 | 0.456 1 | 1.062 6 | 0.445 4 | 0.131 0 | 0.084 8 | 0.965 5 | 0.985 5 |
q0.8 | 0.000 5 | 0.000 04 | 2.225 2 | 1.943 8 | 0.255 1 | 1.062 6 | 0.979 5 | 0.148 1 | 0.100 9 | 0.955 9 | 0.979 5 |
q0.9 | 0.000 5 | 0.000 03 | 2.190 2 | 1.885 4 | 0.133 0 | 1.305 5 | 0.192 8 | 0.162 1 | 0.110 3 | 0.947 1 | 0.975 5 |
Table 6
Error variance function results of Larix gmelinii volume models"
方差函数 error function | 变量 variable | 赤池信息准则 AIC | 贝叶斯准则 BIC | ||||||
---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (12) | (13) | (1) | (2) | (12) | (13) | ||
指数函数 exponential function | V | -292.6 | -405.2 | -295.2 | -452.7 | -280.7 | -390.2 | -282.2 | -436.4 |
-305.9 | -405.0 | -310.1 | -470.9 | -293.9 | -390.1 | -297.1 | -454.6 | ||
D | -331.9 | -444.9 | -342.7 | -497.9 | -319.9 | -430.0 | -329.7 | -481.6 | |
-327.3 | -453.7 | -349.8 | -501.9 | -315.4 | -438.7 | -336.8 | -485.6 | ||
幂函数 power function | V | -333.2 | -457.6 | -344.8 | -506.5 | -321.2 | -442.7 | -331.9 | -490.3 |
-341.6 | -456.0 | -355.5 | -512.7 | -329.7 | -441.1 | -342.5 | -496.5 | ||
D | 5.8 | -59.6 | 77.7 | 135.2 | 17.7 | -44.7 | 90.7 | 151.5 | |
5.8 | -59.6 | 77.7 | 135.2 | 17.7 | -44.7 | 90.7 | 151.5 | ||
常数加幂函数 constant plus power function | V | -331.5 | -455.6 | -343.6 | -505.0 | -316.6 | -437.7 | -327.3 | -485.5 |
-339.6 | -454.0 | -353.5 | -510.9 | -324.7 | -436.1 | -337.3 | -491.4 | ||
D | 7.7 | -57.6 | -295.2 | 137.2 | 22.7 | -39.7 | 95.9 | 156.7 | |
7.7 | -57.6 | -310.1 | 137.2 | 22.7 | -39.7 | 95.9 | 156.7 |
Table 7
Validation of individual volume models"
模型 model | 自变量 independent variables | MAE | RMSE% | RMSE | R2 | AIC |
---|---|---|---|---|---|---|
(2) | D、H | 0.147 8 | 13.40 | 0.195 0 | 0.911 1 | -138.886 7 |
(13) | D、H、qb(0.5) | 0.058 0 | 5.30 | 0.077 2 | 0.986 1 | -220.435 8 |
(15) | D、H、qn(0.5) | 0.059 9 | 11.37 | 0.086 3 | 0.982 7 | -225.294 9 |
(17) | D、H、qg(0.6) | 0.091 2 | 8.36 | 0.121 7 | 0.965 4 | -180.376 6 |
(5) | D、H | 0.165 8 | 16.13 | 0.207 8 | 0.834 9 | -133.279 5 |
[1] | ZAVARZIN V V, LEBEDEV A V, GEMONOV A V. Estimation and validation of stem volume equations for Pinus sibirica in Russia[J]. IOP Conference Series:Earth and Environmental Science, 2021, 677(5):052117.DOI: 10.1088/1755-1315/677/5/052117. |
[2] | ÖZCELIK R, ALTINKAYA H. Comparison of tree volume equations for brutian pine stands in Egirdir district[J]. Turkish Journal of Forestry Türkiye Ormanc Dergisi, 2019(84):149-156.DOI: 10.18182/tjf.566019. |
[3] | 曾伟生, 贺东北, 蒲莹, 等. 含地域和起源因子的马尾松立木生物量与材积方程系统[J]. 林业科学, 2019, 55(2):75-86. |
ZENG W S, HE D B, PU Y, et al. Individual tree biomass and volume equation system with region and origin in variables for Pinus massoniana in China[J]. Scientia Silvae Sinicae, 2019, 55(2):75-86.DOI: 10.11707/j.1001-7488.20190208. | |
[4] | TURNBLOM E C, BURK T E. Adjusting volume table estimates using normal form quotient[J]. Canadian Journal of Forest Research, 1996, 26 (1): 155-158. DOI: 10.1139/x26-018. |
[5] | AKINDELE S O, LEMAY V M. Development of tree volume equations for common timber species in the tropical rain forest area of Nigeria[J]. Forest Ecology and Management, 2006, 226(1/2/3):41-48.DOI: 10.1016/j.foreco.2006.01.022. |
[6] | LUOMA V, SAARINEN N, KANKARE V, et al. Examining changes in stem taper and volume growth with two-date 3D point clouds[J]. Forests, 2019, 10 (5):0382.DOI: 10.3390/f10050382. |
[7] | KERSHAW J A JR, DUCEY M J, BEERS T W, et al. Forest mensuration[M]. 5th ed. New York: John Wiley & Sons, 2016:1-592. DOI: 10.1002/9781118902028. |
[8] | PEREIRA J E S, BARRETO-GARCIA P A B, PAULA A, et al. Form quotient in estimating Caatinga tree volume[J]. Journal of Sustainable Forestry, 2021, 40(5): 508-517. DOI: 10.1080/10549811.2020.1779090. |
[9] | 李悦黎, 杜纪山. 正形率系列特性及其应用的研究[J]. 西北林学院学报, 1994, 9(3):53-58. |
LI Y L, DU J S. Characteristics and application of the sequential normal form quotient[J]. Journal of Northwest Forestry University, 1994, 9(3):53-58. | |
[10] | BARAL S, NEUMANN M, BASNYAT B, et al. Form factors of an economically valuable sal tree (Shorea robusta) of Nepal[J]. Forests, 2020, 11(7):754.DOI: 10.3390/f11070754. |
[11] | KONG L, YANG H, KANG X, et al. Stand volume equation developed from an experimental form factor with the breast height form quotient[J]. Taiwan Journal of Forest Science, 2012, 27(4): 357-367. DOI:10.7075/TJFS.201212.0357. |
[12] | 种雨丝, 何培, 张兹鹏, 等. 应用地基激光雷达三维点云数据构建长白落叶松树干削度方程[J]. 东北林业大学学报, 2024, 52(3):69-75. |
CHONG Y S, HE P, ZHANG Z P, et al. Construction of a Larix gmelinii trunk taper equation using terrestrial laser scanning three-dimensional point cloud data[J]. Journal of Northeast Forestry University, 2024, 52(3):69-75.DOI: 10.13759/j.cnki.dlxb.2024.03.006. | |
[13] | 花伟成, 田佳榕, 孙心雨, 等. 基于TLS数据的杨树削度方程建立及材积估算[J]. 南京林业大学学报(自然科学版), 2021, 45(4):41-48. |
HUA W C, TIAN J R, SUN X Y, et al. Assessing the stem taper function and volume estimation of poplar (Populus)by terrestrial laser scanning[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2021, 45(4):41-48.DOI: 10.12302/j.issn.1000-2006.202006023. | |
[14] | 高谢雨, 董利虎, 郝元朔. 基于TLS的抚育间伐对长白落叶松干形的影响[J]. 南京林业大学学报(自然科学版), 2023, 47(6):85-94. |
GAO X Y, DONG L H, HAO Y S. Effects of thinning on Larix olgensis plantation stem form based on TLS[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2023, 47(6):85-94.DOI: 10.12302/j.issn.1000-2006.202211012. | |
[15] | KALLIOVIRTA J, LAASASENAHO J, KANGAS A. Evaluation of the laser-relascope[J]. Forest Ecology and Management, 2005, 204(2/3):181-194.DOI: 10.1016/j.foreco.2004.09.020. |
[16] | 中华人民共和国农林部. 立木材积表:LY 208—77[M]. 北京: 技术标准出版社,1978. |
Agriculture and Forestry Ministry of China. Tree volume tables: LY 208—77[M]. Beijing: Technical Standards Press, 1978. | |
[17] | 李凤日. 测树学[M]. 4版. 北京: 中国林业出版社,2019:1-397. |
LI F R. Forest mensuration[M]. 4th ed. Beijing: China Forestry Publishing House,2019:1-397. | |
[18] | YUSUP A, HALIK Ü, KEYIMU M, et al. Trunk volume estimation of irregular shaped Populus euphratica riparian forest using TLS point cloud data and multivariate prediction models[J]. Forest Ecosystems, 2023,10:100082.DOI: 10.1016/j.fecs.2022.100082. |
[19] | MCROBERTS R E, WESTFALL J A. Effects of uncertainty in model predictions of individual tree volume on large area volume estimates[J]. Forest Science, 2014, 60(1):34-42.DOI: 10.5849/forsci.12-141. |
[20] | WANG M L, KANE M B, BORDERS B E, et al. Direct variance-covariance modeling as an alternative to the traditional guide curve approach for prediction of dominant heights[J]. Forest Science, 2014, 60(4):652-662.DOI: 10.5849/forsci.13-019. |
[21] | 曾伟生. 我国主要树种二元立木材积表的检验[J]. 林业资源管理, 2018(5):35-41. |
ZENG W S. Validation of two-variable tree volume tables for main tree species in China[J]. Forest Resources Management, 2018(5):35-41.DOI: 10.13466/j.cnki.lyzygl.2018.05.007. | |
[22] | 曾伟生, 杨学云. 我国一元立木材积表基本现状分析与估计误差检验[J]. 林业资源管理, 2023(2):43-49. |
ZENG W S, YANG X Y. Analysis of general status and examination of estimation errors for one-variable tree volume tables in China[J]. Forest Resources Management, 2023(2):43-49.DOI: 10.13466/j.cnki.lyzygl.2023.02.006. | |
[23] | RUSTAGI K P, LOVELESS R S. Improved cubic volume prediction using a new measure of form factor[J]. Forest Ecology and Management, 1991, 40(1/2):1-11.DOI: 10.1016/0378-1127(91)90087-C. |
[24] | ADEKUNLE V A J, NAIR K N, SRIVASTAVA A K, et al. Models and form factors for stand volume estimation in natural forest ecosystems:a case study of Katarniaghat Wildlife Sanctuary (KGWS),Bahraich District,India[J]. Journal of Forestry Research, 2013, 24(2):217-226.DOI: 10.1007/s11676-013-0347-8. |
[25] | TENZIN J, WANGCHUK T, HASENAUER H. Form factor functions for nine commercial tree species in Bhutan[J]. Forestry, 2016,90: 359-366.DOI: 10.1093/forestry/cpw044. |
[26] | BI H Q. Improving stem volume estimation of regrowth Eucalyptus fastigata with a lower stem form quotient[J]. Australian Forestry, 1994, 57(3):98-104.DOI: 10.1080/00049158.1994.10676123. |
[27] | 张兹鹏, 王君杰, 刘索名, 等. 形率对白桦单木材积和生物量预测精度的影响[J]. 林业科学, 2022, 58(5):31-39. |
ZHANG Z P, WANG J J, LIU S M, et al. Effect of form quotient on prediction accuracy of individual tree volume and biomass of Betula platyphylla[J]. Scientia Silvae Sinicae, 2022, 58(5):31-39.DOI: 10.11707/j.1001-7488.20220504. | |
[28] | CHAPAGAIN T R, SHARMA R P. Modeling form factors for sal (Shorea robusta Gaertn.) using tree and stand measures,and random effects[J]. Forest Ecology and Management, 2021,482:118807.DOI: 10.1016/j.foreco.2020.118807. |
[29] | ADESOYE P O, POPOOLA O D. Determinants of stem form:application to Tectona grandis(Linn.F) stands[J]. Journal of Sustainable Forestry, 2016, 35(5):338-354.DOI: 10.1080/10549811.2016.1177730. |
[30] | 靳晓东, 姜立春. 基于树干不同形率的樟子松立木材积方程研建[J]. 北京林业大学学报, 2020, 42(3):78-86. |
JIN X D, JIANG L C. Equation construction on standing tree volume of Pinus sylvestris var. mongolica based on different form quotients of trunk[J]. Journal of Beijing Forestry University, 2020, 42(3):78-86.DOI: 10.12171/j.1000-1522.20190047. |
[1] | PENG Wenyue, JIA Weiwei, WANG Fan, LI Xin, LI Dandan. Extraction and construction of a QSM-based model of first-order branches of Larix gmelinii plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 185-193. |
[2] | ZHAO Jinman, HAN Xinyue, CHENG Ruiming, ZHANG Zhidong. Health assessment of Larix gmelinii var. principis-rupprechtii and Pinus sylvestris var. mongolica plantations in Saihanba Nature Reserve [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 199-206. |
[3] | HAN Xinyu, GAO Lushuang, QIN Li, PANG Rongrong, LIU Mingqian, ZHU Yihong, TIAN Yiyu, ZHANG Jin. Effect of stand density on radial growth-climate relationship of Larix gmelinii [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 182-190. |
[4] | ZUO Zhuang, ZHANG Yun, CUI Xiaoyang. Early effects of fire on soil nitrogen content and form in Larix gmelinii forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 147-154. |
[5] | LU Wenyan, DONG Lingbo, TIAN Yuan, WANG Shashan, QU Xuanyi, WEI Wei, LIU Zhaogang. Modelling height-diameter curves of main species for natural forests based on species composition in Greater Khingan Mountains, northeast China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 157-165. |
[6] | GAO Yu, LI Jing, LIU Yang, WU Yahan, GONG Jiaxing, XIN Qirui. Application of structural equation model in growth of Larix gmelinii stand [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 38-46. |
[7] | ZHAO Kaige, ZHOU Zhenghu, JIN Ying, WANG Chuankuan. Effects of long-term nitrogen addition on soil carbon, nitrogen, phosphorus and extracellular enzymes in Larix gmelinii and Fraxinus mandshurica plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 177-184. |
[8] | XIE Lihong, HUANG Qingyang, CAO Hongjie, YANG Fan, WANG Jifeng, NI Hongwei. Effects of climate warming on radial growth of Larix gmelinii in Wudalianchi, Heilongjiang Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 150-158. |
[9] | WANG Junjie, JIANG Lichun. Predicting crown width for Larix gmelinii based on linear quantiles groups [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 161-170. |
[10] | WANG Bing, ZHANG Pengjie, ZHANG Qiuliang. Characteristics of the soil aggregate and its organic carbon in different Larix gmelinii forest types [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 15-24. |
[11] | XIN Shidong, HEI Pei, JIANG Lichun. Effects of different calibration positions on prediction precision of quantile taper function for Larix gmelinii [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(1): 182-188. |
[12] | HE Pei, XIA Wanqi, JIANG Lichun. Stem taper modeling equation for dahurian larch based on nonparametric regression methods [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 184-192. |
[13] | ZHOU Sihan, ZHANG Yun, CUI Xiaoyang. Temporal and spatial dynamics of soil available potassium in a post-fire Larix gmelinii forest [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 141-147. |
[14] | WEI Yulong, ZHANG Qiuliang. Forest edge renewal of Larix gmelinii and its response to the environment [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(2): 165-172. |
[15] | GUAN Huiwen, DONG Xibin, ZHANG Tian, QU Hangfeng, WANG Zhiyong, RUAN Jiafu. Effects of thinning on hydrological properties of the natural secondary Larix gmelinii forest in the Daxing’an Mountains [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(06): 68-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||