Effects of bamboo charcoal on the growth and nutrient status of Zelkova schneideriana container seedlings

LIU Zemao, YAN Xin, WU Wen, ZHANG Yuhui, YU Fangyuan

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 111-118.

PDF(1322 KB)
PDF(1322 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 111-118. DOI: 10.12302/j.issn.1000-2006.202102009

Effects of bamboo charcoal on the growth and nutrient status of Zelkova schneideriana container seedlings

Author information +
History +

Abstract

【Objective】To study the effects of bamboo charcoal on the growth and nutrient status of Zelkova schneideriana container seedlings, and to provide a theoretical basis for determining the most suitable amount of bamboo charcoal for the growth of Z. schneideriana container seedlings.【Method】Using Z. schneideriana container seedlings as the research object, a single-factor randomized block test was conducted and four bamboo charcoal concentration levels (0%, 1%, 3%, and 5%) were used in this experiment. After the test, the seedling growth and nutritional status were measured. Growth indicators included the seedling height, ground diameter, aboveground biomass, underground biomass, total root length, root surface area, total root volume, number of primary lateral roots, and root length of different diameters; nutritional indicators included soluble sugar, starch, soluble protein, nitrogen, and carbon content in stems and roots.【Result】Compared to the control, the height, ground diameter, aboveground biomass, underground biomass, and fine root biomass of Z. schneideriana container seedlings under the other three treatments increased significantly. At the same time, the addition of bamboo charcoal promoted the growth of the aboveground parts of Z. schneideriana container seedlings more effectively than the underground part, which was reflected in the decrease in the root-to-shoot ratio. Under the other three treatments, the number of primary lateral roots, total root length, root surface area, root volume, and fine root length (diameter ≤1 mm) increased significantly compared to the control. The addition of bamboo charcoal significantly reduced the content of soluble sugar and starch in root of Z. schneideriana container seedlings, but had no siginificant effect on soluble protein in root. The addition of bamboo charcoal also promoted the absorption of nitrogen in the medium by the roots of Z. schneideriana container seedlings and accelerated the metabolism of nitrogen in the stems, but had no siginificant effect on the carbon content in the root and seem. The growth promotion and nutrient status improvement of Z. schneideriana container seedlings were enhanced by the increase in bamboo charcoal content. Overall, the addition of 5% bamboo charcoal was the most conducive to the growth of Z. schneideriana container seedlings. Compared to the control, its seedling height increased by 37.84%, ground diameter increased by 17.67%, aboveground biomass increased by 69.56%, underground biomass increased by 63.48%, fine root biomass increased by 49.17%, and fine root length had an increase of 62.38%.【Conclusion】The addition of bamboo charcoal was beneficial to the growth, root establishment, root morphology optimization, and nitrogen absorption and utilization in Z. schneideriana container seedlings. When cultivating Z. schneideriana container seedlings, adding 5% bamboo charcoal to the medium could improve the seedling cultivation.

Key words

bamboo charcoal / Zelkova schneideriana / container seeding / seedling quality / root morphology / nutrient status

Cite this article

Download Citations
LIU Zemao , YAN Xin , WU Wen , et al . Effects of bamboo charcoal on the growth and nutrient status of Zelkova schneideriana container seedlings[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(2): 111-118 https://doi.org/10.12302/j.issn.1000-2006.202102009

References

[1]
刘雪梅, 胡希军, 罗雪梅, 等. 榉树秋季叶色变化类型和生长特性[J]. 经济林研究, 2014, 32(1):121-125,179.
LIU X M, HU X J, LUO X M, et al. Color change types and growth characteristics of Zealkova schneideriana leaves in autumn[J]. Nonwood For Res, 2014, 32(1):121-125,179. DOI: 10.14067/j.cnki.1003-8981.2014.01.029.
[2]
孙杰杰, 沈爱华, 黄玉洁, 等. 浙江省大叶榉树生境地群落数量分类与排序[J]. 南京林业大学学报(自然科学版), 2019, 43(4):85-93.
SUN J J, SHEN A H, HUANG Y J, et al. Quantitative classification and ordination of Zelkova schneiderianahabitat in Zhejiang Province[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(4):85-93. DOI: 10.3969/j.issn.1000-2006.201809027.
[3]
SUN J J, QIU H J, GUO J H, et al. Modeling the potential distribution of Zelkova schneideriana under different human activity intensities and climate change patterns in China[J]. Glob Ecol Conserv, 2020, 21:e00840. DOI: 10.1016/j.gecco.2019.e00840.
[4]
周志春, 刘青华, 胡根长, 等. 3种珍贵用材树种轻基质网袋容器育苗方案优选[J]. 林业科学, 2011, 47(10):172-178.
ZHOU Z C, LIU Q H, HU G C, et al. Scheme optimization of light substrate for container seedlings of three precious timber tree species[J]. Sci Silvae Sin, 2011, 47(10):172-178.
[5]
DUMROESE R K, SUNG S J S, PINTO J R, et al. Morphology,gas exchange,and chlorophyll content of longleaf pine seedlings in response to rooting volume,copper root pruning,and nitrogen supply in a container nursery[J]. New For, 2013, 44(6):881-897. DOI: 10.1007/s11056-013-9377-5.
[6]
高继平, 隋阳辉, 霍轶琼, 等. 生物炭用作水稻育苗基质的研究进展[J]. 作物杂志, 2014(2):16-21.
GAO J P, SUI Y H, HUO Y Q, et al. The research progress and prospects on biochar used as matrix in rice seedling[J]. Crops, 2014(2): 16-21. DOI: 10.16035/j.issn.1001-7283.2014.02.013.
[7]
BURRELL L D, ZEHETNER F, RAMPAZZO N, et al. Long-term effects of biochar on soil physical properties[J]. Geoderma, 2016, 282:96-102. DOI: 10.1016/j.geoderma.2016.07.019.
[8]
XIANG Y Z, DENG Q, DUAN H L, et al. Effects of biochar application on root traits:a meta-analysis[J]. GCB Bioenergy, 2017, 9(10):1563-1572. DOI: 10.1111/gcbb.12449.
[9]
王军, 施雨, 李子媛, 等. 生物炭对退化蔬菜地土壤及其修复过程中N2O产排的影响[J]. 土壤学报, 2016, 53(3):713-723.
WANG J, SHI Y, LI Z Y, et al. Effects of biochar application on N2O emission in degraded vegetable soil and in remediation process of the soil[J]. Acta Pedol Sin, 2016, 53(3):713-723. DOI: 10.11766/trxb201509170443.
[10]
DHEN N, ABED S B, ZOUBA A, et al. The challenge of using date branch waste as a peat substitute in container nursery production of lettuce (Lactuca sativa L.)[J]. Int J Recycl Org Waste Agric, 2018, 7(4):357-364. DOI: 10.1007/s40093-018-0221-y.
[11]
吕高明, 蒋琳琳, 张敬沙, 等. 生物炭在园林环保领域的研究进展[J]. 安徽农学通报, 2020, 26(12):90-94.
LYU G M, JIANG L L, ZHANG J S, et al. Research progress of biochar in the field of garden environmental protection[J]. Anhui Agric Sci Bull, 2020, 26(12):90-94. DOI: 10.16377/j.cnki.issn1007-7731.2020.12.041.
[12]
陈庆飞, 石岩, 刘玉学, 等. 生物炭替代泥炭栽培基质对铁皮石斛生长的影响[J]. 中国农学通报, 2015, 31(13):30-35.
CHEN Q F, SHI Y, LIU Y X, et al. Effects of biochar replacing peat in culture media on the growth of Dendrobium officinale[J]. Chin Agric Sci Bull, 2015, 31(13):30-35.
[13]
刘玉学, 王耀锋, 吕豪豪, 等. 不同稻秆炭和竹炭施用水平对小青菜产量、品质以及土壤理化性质的影响[J]. 植物营养与肥料学报, 2013, 19(6):1438-1444.
LIU Y X, WANG Y F, LYU H H, et al. Effects of different application rates of rice straw biochar and bamboo biochar on yield and quality of greengrocery(Brassica chinensis) and soil properties[J]. Plant Nutr Fertil Sci, 2013, 19(6):1438-1444. DOI: 10.11674/zwyf.2013.0618.
[14]
LYCHUK T E, IZAURRALDE R C, HILL R L, et al. Biochar as a global change adaptation:predicting biochar impacts on crop productivity and soil quality for a tropical soil with the Environmental Policy Integrated Climate (EPIC) model[J]. Mitig Adapt Strateg Glob Change, 2015, 20(8):1437-1458. DOI: 10.1007/s11027-014-9554-7.
[15]
KUMAR A, BHATTACHARYA T. Biochar:a sustainable solution[J]. Environ Dev Sustain, 2021, 23(5):6642-6680. DOI: 10.1007/s10668-020-00970-0.
[16]
沈信权, 徐佳乐, 沈建林, 等. 添加竹炭对土壤肥力的影响[J]. 浙江林业科技, 2012, 32(5):9-12.
SHEN X Q, XU J L, SHEN J L, et al. Effect of addition of bamboo charcoal on soil fertility[J]. J Zhejiang For Sci Technol, 2012, 32(5):9-12. DOI: 10.3969/j.issn.1001-3776.2012.05.003.
[17]
陈开超. 竹炭及其新型颗粒基质对长寿花等3种植物生长的影响[J]. 现代农业科技, 2014(11):169-170,172.
CHEN K C. Effects of bamboo charcoal and its new granular matrix on the growth of three plants such as Narcissus jonquilla L.[J]. Xiandai Nongye Keji, 2014(11): 169-170, 172. DOI: 10.3969/j.issn.1007-5739.2014.11.105.
[18]
高海英, 陈心想, 张雯, 等. 生物炭和生物炭基氮肥的理化特征及其作物肥效评价[J]. 西北农林科技大学学报(自然科学版), 2013, 41(4):69-78,85.
GAO H Y, CHEN X X, ZHANG W, et al. Physicochemical properties and efficiencies of biochar and biochar-fbased nitrogenous fertilizer[J]. J Northwest A F Univ (Nat Sci Ed), 2013, 41(4):69-78,85. DOI: 10.13207/j.cnki.jnwafu.2013.04.012.
[19]
李松昊, 何冬华, 沈秋兰, 等. 竹炭对三叶草生长及土壤细菌群落的影响[J]. 应用生态学报, 2014, 25(8):2334-2340.
LI S H, HE D H, SHEN Q L, et al. Effects of bamboo charcoal on the growth of Trifolium repens and soil bacterial community structure[J]. Chin J Appl Ecol, 2014, 25(8):2334-2340. DOI: 10.13287/j.1001-9332.20140530.017.
[20]
宿贤超, 胡杨勇, 赵薇, 等. 添加竹炭对土壤化学性质和重金属有效性及水稻生长的影响[J]. 浙江农业学报, 2014, 26(2):439-443.
SU X C, HUYANG Y, ZHAO W, et al. Effects of addition of bamboo charcoal on soil chemical properties,heavy metal availability,and rice growth[J]. Acta Agric Zhejiangensis, 2014, 26(2):439-443. DOI: 10.3969/j.issn.1004-1524.2014.02.34.
[21]
MA J Y, NI X, HUANG Q Y, et al. Effect of bamboo biochar on reducing grain cadmium content in two contrasting wheat genotypes[J]. Environ Sci Pollut Res, 2021, 28(14):17405-17416. DOI: 10.1007/s11356-020-12007-0.
[22]
LIU Y X, WANG Y Y, LU H H, et al. Biochar application as a soil amendment for decreasing cadmium availability in soil and accumulation in Brassica chinensis[J]. J Soils Sediments, 2018, 18(7):2511-2519. DOI: 10.1007/s11368-018-1927-1.
[23]
李延军, 许斌, 张齐生, 等. 我国竹材加工产业现状与对策分析[J]. 林业工程学报, 2016, 1(1):2-7.
LI Y J, XU B, ZHANG Q S, et al. Present situation and the countermeasure analysis of bamboo timber processing industry in China[J]. J For Eng, 2016, 1(1):2-7. DOI: 10.13360/j.issn.2096-1359.2016.01.001.
[24]
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
LI H S. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000.
[25]
BRADFORD M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72:248-254. DOI: 10.1006/abio.1976.9999.
[26]
ZHANG J, F, LUO C, et al. Humification characterization of biochar and its potential as a composting amendment[J]. J Environ Sci (China), 2014, 26(2):390-397. DOI: 10.1016/s1001-0742(13)60421-0.
[27]
AMELOOT N, GRABER E R, VERHEIJEN F G A, et al. Interactions between biochar stability and soil organisms:review and research needs[J]. Eur J Soil Sci, 2013, 64(4):379-390. DOI: 10.1111/ejss.12064.
[28]
武玉, 徐刚, 吕迎春, 等. 生物炭对土壤理化性质影响的研究进展[J]. 地球科学进展, 2014, 29(1):68-79.
WU Y, XU G, Y C, et al. Effects of biochar amendment on soil physical and chemical properties:current status and knowledge gaps[J]. Adv Earth Sci, 2014, 29(1):68-79.
[29]
CHA J S, PARK S H, JUNG S C, et al. Production and utilization of biochar:a review[J]. J Ind Eng Chem, 2016, 40:1-15. DOI: 10.1016/j.jiec.2016.06.002.
[30]
BRENNAN A, JIMÉNEZ E M, PUSCHENREITER M, et al. Effects of biochar amendment on root traits and contaminant availa-bility of maize plants in a copper and arsenic impacted soil[J]. Plant Soil, 2014, 379(1/2):351-360. DOI: 10.1007/s11104-014-2074-0.
[31]
GUO D L, MITCHELL R J, HENDRICKS J J. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest[J]. Oecologia, 2004, 140(3):450-457. DOI: 10.1007/s00442-004-1596-1.
[32]
WANG W, HU K, HUANG K, et al. Mechanical fragmentation of leaf litter by fine root growth contributes greatly to the early decomposition of leaf litter[J]. Glob Ecol Conserv, 2021, 26:e01456. DOI: 10.1016/j.gecco.2021.e01456.
[33]
GERMON A, JOURDAN C, BORDRON B, et al. Consequences of clear-cutting and drought on fine root dynamics down to 17 m in coppice-managed eucalypt plantations[J]. For Ecol Manag, 2019, 445:48-59. DOI: 10.1016/j.foreco.2019.05.010.
[34]
RAZAQ M, SALAHUDDIN, SHEN H L, et al. Influence of biochar and nitrogen on fine root morphology,physiology,and chemistry of Acer mono[J]. Sci Rep, 2017, 7(1):5367. DOI: 10.1038/s41598-017-05721-2.
[35]
战秀梅, 彭靖, 王月, 等. 生物炭及炭基肥改良棕壤理化性状及提高花生产量的作用[J]. 植物营养与肥料学报, 2015, 21(6):1633-1641.
ZHAN X M, PENG J, WANG Y, et al. Influences of application of biochar and biochar-based fertilizer on brown soil physiochemical properties and peanut yields[J]. Plant Nutr Fertil Sci, 2015, 21(6):1633-1641. DOI: 10.11674/zwyf.2015.0631.
[36]
ATKINSON C J, FITZGERALD J D, HIPPS N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils:a review[J]. Plant Soil, 2010, 337(1/2):1-18. DOI: 10.1007/s11104-010-0464-5.
[37]
AGEGNEHU G, SRIVASTAVA A K, BIRD M I. The role of biochar and biochar-compost in improving soil quality and crop performance: a review[J]. Appl Soil Ecol, 2017, 119:156-170. DOI: 10.1016/j.apsoil.2017.06.008.
[38]
PREGITZER K S, DEFOREST J L, BURTON A J, et al. Fine root architecture of nine north American trees[J]. Ecol Monogr,2002, 72(2):293-309. DOI: 10.1890/0012-9615(2002)072[0293:fraonn]2.0.co;2.
[39]
ROBERTSON S J, RUTHERFORD P M, LÓPEZ-GUTIÉRREZ J C, et al. Biochar enhances seedling growth and alters root symbioses and properties of sub-boreal forest soils[J]. Can J Soil Sci, 2012, 92(2):329-340. DOI: 10.4141/cjss2011-066.
[40]
KEILUWEIT M, NICO P S, JOHNSON M G, et al. Dynamic molecular structure of plant biomass-derived black carbon (Biochar)[J]. Environ Sci & Technol, 2010, 44(4):1247-53. DOI: 10.1021/es9031419.
[41]
李妮, 左强, 邹国元, 等. 三种生物质炭复合基质对番茄育苗效果的影响[J]. 北方园艺, 2015(2):150-153.
LI N, ZUO Q, ZOU G Y, et al. Effect of matrix added to three kinds of biomass carbon on tomato seeding[J]. North Hortic, 2015(2):150-153. DOI: 10.11937/bfyy.201502044.
[42]
SUN J, LI Z Y, ZHU J P, et al. Effects of biochar on soluble sugar content in peach seedlings[J]. E3S Web Conf, 2019, 136:07010. DOI: 10.1051/e3sconf/201913607010.
[43]
刘士玲, 贾宏炎, 陈琳, 等. 容器规格和添加生物炭的基质配方对西南桦幼苗生长的影响[J]. 生态学杂志, 2019, 38(9):2875-2882.
LIU S L, JIA H Y, CHEN L, et al. Effects of container size and medium formula with biochar addition on the growth of Betula alnoides seedlings[J]. Chin J Ecol, 2019, 38(9):2875-2882. DOI: 10.13292/j.1000-4890.201909.013.
[44]
朱奕豪, 朱彦霖, 曹兴, 等. 生物炭对百合生理特性的影响[J]. 北方园艺, 2017(7):92-98.
ZHU Y H, ZHU Y L, CAO X, et al. Effects of biomass charcoal on physiological characteristics of lily[J]. North Hortic, 2017(7):92-98.
[45]
戚琳, 马存琛, 谢伟芳, 等. 不同比例生物炭替代泥炭栽培基质对西瓜幼苗生长的影响[J]. 安徽农业科学, 2017, 45(25):55-58.
QI L, MA C C, XIE W F, et al. Effect of different substitution ratio of peat with biochar as substrates on growth of watermelon seedlings[J]. J Anhui Agric Sci, 2017, 45(25):55-58. DOI: 10.13989/j.cnki.0517-6611.2017.25.018.
PDF(1322 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/