Effects of gap sizes and within-gap positions on the photosynthetic capacity of Pinus koraiensis in Quercus mongolica forests in Xiaoxing’an Mountains

LI Jiaxin, MU Changcheng, TIAN Boyu, YE Lin

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 159-168.

PDF(1856 KB)
PDF(1856 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 159-168. DOI: 10.12302/j.issn.1000-2006.202103035

Effects of gap sizes and within-gap positions on the photosynthetic capacity of Pinus koraiensis in Quercus mongolica forests in Xiaoxing’an Mountains

Author information +
History +

Abstract

【Objective】 The objective of this study was to determine the suitable forest gap area and position in the gaps for the growth of Pinus koraiensis saplings in secondary forests and provide a scientific basis for the restoration of temperate zonal climate vegetation and broad-leaved P. koraiensis forests. Simultaneously, the findings could provide a theoretical support for optimizing management practices. 【Method】P. koraiensis saplings (15 a) from Xiaoxing’an Mountains were used as the test material. Photosynthetic parameters (maximum net photosynthesis rate, light saturation point, light compensation point, and transpiration rate), chlorophyll content, and micro-environmental factors (light transmittance, temperature) of P. koraiensis saplings grown in three locations (central area, transition area, and edge area) in four gaps[large gap (206.1 m2), medium gap (116.9 m2), small gap (52.4 m2), understory (control, 12.6 m2)]in secondary Quercus mongolica forests were measured using a CIRAS-2 photosynthesis instrument. A Nikon CoolPix 4500 digital camera with a 180° fisheye lens was used to collect photographs of the gaps and obtain the light transmittance at various plots. By comparing the differences in the photosynthetic capacity of P. koraiensis saplings in different gap sizes and within-gap positions, we explored the effects of gap sizes and within-gap positions on the photosynthetic capacity of P. koraiensis saplings.【Result】(1) The photosynthetic capacity of the P. koraiensis saplings was significantly higher in medium and small gaps. Specifically, the medium and small gaps increased the maximum net photosynthetic rate by 20.0%-60.7% compared with that in understory, and the rate within the medium gap was higher than that of the small gap by 9.2%-15.1%. However, the large gap had no significant effect on the photosynthetic rate. (2) The maximum net photosynthetic rate of P. koraiensis saplings in various gaps decreased along the micro-habitat gradient of the center, transition and edge areas of the gaps (92.7%-22.5%). (3) In the medium and small gaps, the light saturation point of P. koraiensis saplings was higher than that for the forest understory, and the light compensation point was lower than that in the forest understory. However, the transpiration rate, stomatal conductance, and intercellular CO2 concentration in the medium gap were higher than those in the forest understory, and the chlorophyll content was lower than that in the forest understory. The micro-habitat gradient from the central area to the edge area of the gaps reduced the light saturation point of the P. koraiensis saplings, and increased the light compensation point, and decreased the transpiration rate and stomatal conductance, and increased the chlorophyll content.【Conclusion】P. koraiensis saplings in the secondary Q. mongolica forest had a strong photosynthetic capacity in the central area of the medium gaps (116.9 m2). Therefore, to restore P. koraiensis forests rapidly, suitable gaps should be created, and full use of the central position in the gaps should be made.

Key words

Quercus mongolica / Pinus koraiensis / photosynthetic capacity / gap size / within-gap position / Xiaoxing’an Mountains

Cite this article

Download Citations
LI Jiaxin , MU Changcheng , TIAN Boyu , et al. Effects of gap sizes and within-gap positions on the photosynthetic capacity of Pinus koraiensis in Quercus mongolica forests in Xiaoxing’an Mountains[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(2): 159-168 https://doi.org/10.12302/j.issn.1000-2006.202103035

References

[1]
DENSLOW J S. Tropical rainforest gaps and tree species diversity[J]. Annu Rev Ecol Syst, 1987, 18(1): 431-451. DOI: 10.1146/annurev.es.18.110187.002243.
[2]
NICOTRA A B, CHAZDON R L, IRIARTE S V B. Spatial hetero-geneity of light and woody seedling regeneration in tropical wet forests[J]. Ecology, 1999, 80(6): 1908-1926. DOI: 10.1890/0012-9658(1999)080
[ 1908:SHOLAW]
[3]
WHITMORE T C. Canopy gaps and the two major groups of forest trees[J]. Ecology, 1989, 70(3): 536-538. DOI: 10.2307/1940195.
[4]
YE F, COMEAU P G. Effects of gap size and surrounding trees on light patterns and aspen branch growth in the western boreal forest[J]. Can J For Res, 2009, 39(11): 2021-2032. DOI: 10.1139/x09-114.
[5]
MUSCOLO A, BAGNATO S, SIDARI M, et al. A review of the roles of forest canopy gaps[J]. J For Res, 2014, 25(4): 725-736. DOI: 10.1007/s11676-014-0521-7.
[6]
王智斌. 冠层林隙面积对油松和华北落叶松更新苗生长和空间分布的影响[D]. 北京: 北京林业大学, 2017.
WANG Z B. Effects of canopy gap size on growth and spatial patterns of regene-ration of Pinus tabulaeformis and Larix principis-rupprechtii[D]. Beijing: Beijing Forestry University, 2017.
[7]
POULSON T L, PLATT W J. Replacement patterns of beech and sugar maple in warren woods, Michigan[J]. Ecology, 1996, 77(4): 1234-1253. DOI: 10.2307/2265592.
[8]
GRAY A N, SPIES T A. Gap size, within-gap position and canopy structure effects on conifer seedling establishment[J]. J Ecol, 1996, 84(5): 635. DOI: 10.2307/2261327.
[9]
DIACI J, GYOEREK N, GLIHA J, et al. Response of Quercus robur L. seedlings to north-south asymmetry of light within gaps in floodplain forests of Slovenia[J]. Ann For Sci, 2008, 65(1): 105. DOI: 10.1051/forest:2007077.
[10]
庞圣江, 张培, 杨保国, 等. 林隙大小对土沉香人工更新幼树生长发育的影响[J]. 西北农林科技大学学报(自然科学版), 2020, 48(4): 83-88.
PANG S J, ZHANG P, YANG B G, et al. Effects of gap size on growth of transplanted saplings of Aquilaria sinensis[J]. J Northwest A F Univ (Nat Sci Ed), 2020, 48(4): 83-88. DOI: 10.13207/j.cnki.jnwafu.2020.04.011.
[11]
DOS SANTOS V A H F, FERREIRA M J. Are photosynthetic leaf traits related to the first-year growth of tropical tree seedlings? A light-induced plasticity test in a secondary forest enrichment planting[J]. For Ecol Manag, 2020, 460: 117900. DOI: 10.1016/j.foreco.2020.117900.
[12]
SCAFARO A P, XIANG S, LONG B M, et al. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content[J]. Glob Chang Biol, 2017, 23(7): 2783-2800. DOI: 10.1111/gcb.13566.
[13]
DA COSTA G S, DALMOLIN Â C, SCHILLING A C, et al. Physiological and growth strategies of two Cariniana species in response to contrasting light availability[J]. Flora, 2019, 258: 151427. DOI: 10.1016/j.flora.2019.151427.
[14]
CATER M, DIACI J, ROZENBERGAR D. Gap size and position influence variable response of Fagus sylvatica L. and Abies alba Mill.[J]. For Ecol Manag, 2014, 325: 128-135. DOI: 10.1016/j.foreco.2014.04.001.
[15]
OGUCHI R, HIURA T, HIKOSAKA K. The effect of interspecific variation in photosynthetic plasticity on 4-year growth rate and 8-year survival of understorey tree seedlings in response to gap formations in a cool-temperate deciduous forest[J]. Tree Physiol, 2017, 37(8): 1113-1127. DOI: 10.1093/treephys/tpx042.
[16]
ZHANG M M, YI X F. Seedling recruitment in response to artificial gaps: predicting the ecological consequence of forest distur-bance[J]. Plant Ecol, 2021, 222(1): 81-92. DOI: 10.1007/s11258-020-01089-y.
[17]
DUMAIS D, RAYMOND P, PRÉVOST M. Eight-year ecophy-siology and growth dynamics of Picea rubens seedlings planted in harvest gaps of partially cut stands[J]. For Ecol Manag, 2020, 478: 118514. DOI: 10.1016/j.foreco.2020.118514.
[18]
HE Z S, TANG R, LI M J, et al. Response of photosynthesis and chlorophyll fluorescence parameters of Castanopsis kawakamii seedlings to forest gaps[J]. Forests, 2019, 11(1): 21. DOI: 10.3390/f11010021.
[19]
贺丹妮, 杨华, 温静, 等. 长白山云冷杉针阔混交林不同林隙下幼苗幼树密度及空间分布[J]. 应用生态学报, 2020, 31(6): 1916-1922.
HE D N, YANG H, WEN J, et al. Density and spatial distribution of seedlings and saplings in different gap sizes of a spruce-fir mixed stand in Changbai Mountains, China[J]. Chin J Appl Ecol, 2020, 31(6): 1916-1922. DOI: 10.13287/j.1001-9332.202006.004.
[20]
WEBB S L. Contrasting windstorm consequences in two forests, Itasca State Park, Minnesota[J]. Ecology, 1989, 70(4): 1167-1180. DOI: 10.2307/1941384.
[21]
NAGEL T A, SVOBODA M, RUGANI T, et al. Gap regeneration and replacement patterns in an old-growth Fagus-Abies forest of Bosnia-Herzegovina[J]. Plant Ecol, 2010, 208(2): 307-318. DOI: 10.1007/s11258-009-9707-z.
[22]
PRENTICE I C, LEEMANS R. Pattern and process and the dynamics of forest structure: a simulation approach[J]. J Ecol, 1990, 78(2): 340. DOI: 10.2307/2261116.
[23]
BUSING R T. Canopy cover and tree regeneration in old-growth cove forests of the Appalachian Mountains[J]. Vegetatio, 1994, 115(1): 19-27. DOI: 10.1007/BF00119383.
[24]
WANG G L, LIU F. The influence of gap creation on the regene-ration of Pinus tabuliformis planted forest and its role in the near-natural cultivation strategy for planted forest management[J]. For Ecol Manag, 2011, 262(3): 413-423. DOI: 10.1016/j.foreco.2011.04.007.
[25]
张丹, 任洁, 王慧梅. 干旱胁迫及复水对红松针叶和树皮绿色组织光合特性及抗氧化系统的影响[J]. 生态学杂志, 2016, 35(10): 2606-2614.
ZHANG D, REN J, WANG H M. Response of photosynthetic characteristics and antioxidant system in needles and bark chlorenchyma of Korean pine to drought stress and rehydration[J]. Chin J Ecol, 2016, 35(10): 2606-2614. DOI: 10.13292/j.1000-4890.201610.024.
[26]
王文杰, 祖元刚, 杨逢建, 等. 边缘效应带促进红松生长的光合生理生态学研究[J]. 生态学报, 2003, 23(11): 2318-2326.
WANG W J, ZU Y G, YANG F J, et al. Photosynthetic ecophysiological study on the growth of Korean pine (Pinus koraiensis) afforested by the edge-effect belt method[J]. Acta Ecol Sin, 2003, 23(11): 2318-2326. DOI: 10.3321/j.issn:1000-0933.2003.11.015.
[27]
孙一荣, 朱教君, 于立忠, 等. 不同光环境对红松幼苗光合生理特征的影响[J]. 生态学杂志, 2009, 28(5): 850-857.
SUN Y R, ZHU J J, YU L Z, et al. Photosynthetic characteristics of Pinus koraiensis seedlings under different light regimes[J]. Chin J Ecol, 2009, 28(5): 850-857. DOI: 10.13292/j.1000-4890.2009.0157.
[28]
于立忠, 苗杰, 张金鑫, 等. 不同透光环境下红松光合色素含量的季节变动及应对策略[J]. 生态学报, 2014, 34(14): 3924-3931.
YU L Z, MIAO J, ZHANG J X, et al. Seasonal vari-ation of photosynthetic pigment content in Pinus koraiensis: the role of different light-induced strategies[J]. Acta Ecol Sin, 2014, 34(14): 3924-3931. DOI: 10.5846/stxb201212031737.
[29]
ZHOU Y B, YIN Y, LIU X S, et al. Photosynthetic induction responses of Pinus koraiensis seedlings grown in different light environments[J]. J For Res, 2004, 15(3): 246-248. DOI: 10.1007/BF02911034.
[30]
ZHU J J, WANG K, SUN Y R, et al. Response of Pinus koraiensis seedling growth to different light conditions based on the assessment of photosynthesis in current and one-year-old needles[J]. J For Res, 2014, 25(1): 53-62. DOI: 10.1007/s11676-014-0432-7.
[31]
霍宏, 王传宽. 冠层部位和叶龄对红松光合蒸腾特性的影响[J]. 应用生态学报, 2007, 18(6): 1181-1186.
HUO H, WANG C K. Effects of canopy position and leaf age on photosynthesis and transpiration of Pinus koraiensis[J]. Chin J Appl Ecol, 2007, 18(6): 1181-1186. DOI: 10.1360/yc-007-1324.
[32]
黄珍, 唐景毅, 柳静臣, 等. 长白山天然更新红松幼树光合与光谱特性的季节动态[J]. 应用与环境生物学报, 2014, 20(3): 455-461.
HUANG Z, TANG J Y, LIU J C, et al. Seasonal dynamics of photosynthesis and spectral characteristics of natural regeneration Pinus koraiensis in the Changbai Mountains[J]. Chin J Appl Environ Biol, 2014, 20(3): 455-461. DOI: 10.3724/sp.j.1145.2014.12026.
[33]
王卓, 范秀华. 阔叶红松林林冠空隙光强异质性对红松幼树生长的影响[J]. 应用生态学报, 2009, 20(5): 1044-1050.
WANG Z, FAN X H. Effects of light intensity heterogeneity in gaps of broadleaved Korean pine forest in Changbai Mountains on Pinus koraiensis seedlings growth[J]. Chin J Appl Ecol, 2009, 20(5): 1044-1050. DOI: CNKI:SUN:YYSB.0.2009-05-006.
[34]
李景文, 葛剑平, 陈动, 等. 红松混交林生态与经营[M]. 哈尔滨: 东北林业大学出版社, 1997: 1-16.
LI J W, GE J P, CHEN D, et al. Ecological and management of Korean pine mixed forest[M]. Harbin: Northeast Forestry University, 1997: 1-16.
[35]
韩丽冬, 牟长城, 张军辉. 透光抚育对长白山阔叶红松林冠下红松光合作用的影响[J]. 东北林业大学学报, 2016, 44(4): 38-40.
HAN L D, MU C C, ZHANG J H. Effect of crown thinning on photosynthesis of understory Korean pine of broadleaved Korean pine mixed forests in Changbai Mountains[J]. J Northeast For Univ, 2016, 44(4): 38-40. DOI: 10.13759/j.cnki.dlxb.20160118.003.
[36]
CHEN X W, LI B L, LIN Z S. The acceleration of succession for the restoration of the mixed-broadleaved Korean pine forests in Northeast China[J]. For Ecol Manag, 2003, 177(1/2/3): 503-514. DOI: 10.1016/S0378-1127(02)00455-3.
[37]
于振良, 赵士洞, 董立荣, 等. 阔叶红松林的研究综述[J]. 吉林林学院学报, 1996(4): 235-238.
YU Z L, ZHAO S D, DONG L R, et al. Summary of broadleaved Korean pine forest[J]. J Jilin For Univ, 1996(4): 235-238.
[38]
RUNKLE J R. Patterns of disturbance in some old-growth mesic forests of eastern North America[J]. Ecology, 1982, 63(5): 1533-1546. DOI: 10.2307/1938878.
[39]
叶子飘. 光合作用对光和CO2响应模型的研究进展[J]. 植物生态学报, 2010, 34(6): 727-740.
Abstract
光合作用对光和CO2响应模型是研究植物生理和植物生态学的重要工具, 可为植物光合特性对主要环境因子的响应提供科学依据。该文综述了当前光合作用对光和CO2响应模型的研究进展和存在的问题, 并在此基础上探讨了这些模型的可能发展趋势。光合作用涉及光能的吸收、能量转换、电子传递、ATP合成、CO2固定等一系列复杂的物理和化学反应过程。光合作用由原初反应、同化力形成和碳同化3个基本过程构成, 任一个过程均可对光合作用速率产生直接的影响。光合作用对光响应模型只涉及光能的转换, 而光合作用的生化模型包含了同化力形成和碳同化这两个基本过程。把光合作用的原初反应, 即把参与光能吸收、传递和转换的捕光色素分子的物理参数(如捕光色素分子数、捕光色素分子光能吸收截面、捕光色素分子处于激发态的平均寿命等)结合到生化模型中, 可能是今后光合作用对光响应机理模型的发展方向。
YE Z P. A review on modeling of responses of photosynthesis to light and CO2[J]. Chin J Plant Ecol, 2010, 34(6): 727-740. DOI: 10.3773/j.issn.1005-264x.2010.06.012.
[40]
汤文华, 窦全琴, 潘平平, 等. 不同薄壳山核桃品种光合特性研究[J]. 南京林业大学学报(自然科学版), 2020, 44(3): 81-88.
TANG W H, DOU Q Q, PAN P P, et al. Photosynthetic characteristics of grafted plants of different Carya illinoinensis varieties[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3): 81-88. DOI: 10.11707/j.issn.1000-2006.201903004.
[41]
MALCOLM D C, MASON W L, CLARKE G C. The transformation of conifer forests in Britain-regeneration, gap size and silvicultural systems[J]. For Ecol Manag, 2001, 151(1/2/3): 7-23. DOI: 10.3969/S0378-1127(00)00692-7.
[42]
CALFAPIETRA C, TULVA I, EENSALU E, et al. Canopy profiles of photosynthetic parameters under elevated CO2 and N fertilization in a poplar plantation[J]. Environ Pollut, 2005, 137(3): 525-535. DOI: 10.1016/j.envpol.2005.01.038.
[43]
CRAINE J M, REICH P B. Leaf-level light compensation points in shade-tolerant woody seedlings[J]. New Phytol, 2005, 166(3): 710-713. DOI: 10.1111/j.1469-8137.2005.01420.x.
[44]
许中秋, 隋德宗, 谢寅峰, 等. 两个乌桕新品种苗木光合特性比较[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 93-100.
XU Z Q, SUI D Z, XIE Y F, et al. Comparison of photosynthetic characteristics of two new Triadica sebifera varieties[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1): 93-100. DOI: 10.12302/j.issn.1000-2006.202003080.
[45]
赵莉, 郑晓媛, 孙广玉. 弱光桑树幼苗形态结构和光合特性对光强的适应性[J]. 经济林研究, 2010, 28(3): 84-89.
ZHAO L, ZHENG X Y, SUN G Y. Morphological structure and photosynthetic adaptations in mulberry seedlings growing in low light to light intensity[J]. Nonwood For Res, 2010, 28(3): 84-89. DOI: 10.14067/j.cnki.1003-8981.2010.03.027.
[46]
MUSCOLO A, SIDARI M, MERCURIO R. Influence of gap size on organic matter decomposition, microbial biomass and nutrient cycle in Calabrian pine (Pinus laricio Poiret) stands[J]. For Ecol Manag, 2007, 242(2/3): 412-418. DOI: 10.1016/j.foreco.2007.01.058.
[47]
SACK L, MELCHER P J, LIU W H, et al. How strong is intracanopy leaf plasticity in temperate deciduous trees?[J]. Am J Bot, 2006, 93(6): 829-839. DOI: 10.3732/ajb.93.6.829.
[48]
SARIJEVA G, KNAPP M, LICHTENTHALER H K. Differences in photosynthetic activity, chlorophyll and carotenoid levels, and in chlorophyll fluorescence parameters in green sun and shade leaves of Ginkgo and Fagus[J]. J Plant Physiol, 2007, 164(7): 950-955. DOI: 10.1016/j.jplph.2006.09.002.
[49]
GOUDIABY V, BRAIS S, GRENIER Y, et al. Thinning effects on Jack pine and Black spruce photosynthesis in eastern boreal forests of Canada[J]. Silva Fenn, 2011, 45(4): 595-609. DOI: 10.14214/sf.95.
[50]
董莉莉, 张慧东, 毛沂新, 等. 间伐对红松Pinus koraiensis针阔混交林冠层结构及林下植被的影响[J]. 沈阳农业大学学报, 2017, 48(2): 159-165.
DONG L L, ZHANG H D, MAO Y X, et al. Influence of thinning on canopy structure and understory vegetation of coniferous-broad leaved Pinus koraiensis mixed forest[J]. J Shenyang Agric Univ, 2017, 48(2): 159-165. DOI: 10.3969/j.issn.1000-1700.2017.02.005.
[51]
VON CAEMMERER S, FARQUHAR G D. Effects of partial defoliation, changes of irradiance during growth, short-term water stress and growth at enhanced p (CO2) on the photosynthetic capacity of leaves of Phaseolus vulgaris L.[J]. Planta, 1984, 160(4): 320-329. DOI: 10.1007/bf00393413.
[52]
吴金芝, 黄明, 王志敏, 等. 干旱对冬小麦旗叶光合参数、产量和水分利用效率的影响[J]. 江苏农业学报, 2021(5):1108-1118.
WU J Z, HUANG M, WANG Z M, et al. Effects of drought on flag leaf photosynthetic parameters, grain yield and water use efficiency in winter wheat[J]. Jiangsu J Agri Sci, 2021(5):1108-1118. DOI: 10.3969/j.issn.1000-4440.2021.05.003.
[53]
URBAS P, ZOBEL K. Adaptive and inevitable morphological plasticity of three herbaceous species in a multi-species community: field experiment with manipulated nutrients and light[J]. Acta Oecologica, 2000, 21(2): 139-147. DOI: 10.1016/S1146-609X(00)00115-6.
[54]
TANAKA R, TANAKA A. Effects of chlorophyllide a oxygenase overexpression on light acclimation in Arabidopsis thaliana[J]. Photosynth Res, 2005, 85(3): 327-340. DOI: 10.1007/s11120-005-6807-z.
[55]
ZHANG T, YAN Q L, WANG J, et al. Restoring temperate se-condary forests by promoting sprout regeneration: effects of gap size and within-gap position on the photosynthesis and growth of stump sprouts with contrasting shade tolerance[J]. For Ecol Manag, 2018, 429: 267-277. DOI: 10.1016/j.foreco.2018.07.025.
[56]
LU D L, ZHU J J, WANG X Y, et al. A systematic evaluation of gap size and within-gap position effects on seedling regeneration in a temperate secondary forest, northeast China[J]. For Ecol Manag, 2021, 490: 119140. DOI: 10.1016/j.foreco.2021.119140.
[57]
罗桂生, 马履一, 贾忠奎, 等. 油松人工林不同大小林隙环境因子差异性比较[J]. 中南林业科技大学学报, 2020, 40(5): 86-94.
LUO G S, MA L Y, JIA Z K, et al. Comparison of environmental factors differences in gaps with different size of Pinus tabulaeformis plantation[J]. J Central South Univ For Technol, 2020, 40(5): 86-94. DOI: 10.14067/j.cnki.1673-923x.2020.05.011.
[58]
RITTER E. Litter decomposition and nitrogen mineralization in newly formed gaps in a Danish beech (Fagus sylvatica) forest[J]. Soil Biol Biochem, 2005, 37(7): 1237-1247. DOI: 10.1016/j.soilbio.2004.11.020.
[59]
GÁLHIDY L, MIHÓK B, HAGYÓ A, et al. Effects of gap size and associated changes in light and soil moisture on the understorey vegetation of a Hungarian beech forest[J]. Plant Ecol, 2006, 183(1): 133-145. DOI: 10.1007/s11258-005-9012-4.
PDF(1856 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/