TabZIP transferred Betula platyphylla generation and salt tolerance analysis

LI Yuanyuan,YANG Guang,WEI Rui,SUN Yanshuang,GUO Yuhua, ZHANG Ruiping,LIU Guifeng*

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2013, Vol. 37 ›› Issue (05) : 6-12.

PDF(1935985 KB)
PDF(1935985 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2013, Vol. 37 ›› Issue (05) : 6-12. DOI: 10.3969/j.issn.1000-2006.2013.05.002

TabZIP transferred Betula platyphylla generation and salt tolerance analysis

  • LI Yuanyuan1,YANG Guang1,WEI Rui1,SUN Yanshuang1,GUO Yuhua2, ZHANG Ruiping1,LIU Guifeng1*
Author information +
History +

Abstract

Plant basic leucine zipper (bZIP) proteins was an important group of plant transcription factors, as these proteins could interact with cisacting ABRE elements. These proteins activated the expression of some resistance related genes such as drought and salt tolerant genes. In order to create novel salttolerant transgenic lines, the transcription factor gene TabZIP was imported from Tamarix into the birch genome by using agrobacterium mediated transfection. Six transgenic lines were confirmed by qRTPCR and Western blotting. We compared the relative height growth rate, chlorophyll fluorescence parameters and salt injury index in transgenic lines before and after salt stress treatments. The results showed that the TB4 transgenic line was superior to other transgenic lines after salt stress treatments, with a relatively higher height growth(524%), increased by 73.5% if compared to control. The salt damage of TB4 transgenic gene was the lowest, with a salt injury index of 005, while controls were 019. After salt treatment, TB4 demonstrated different chlorophyll fluorescence parameters from the other transgenic lines, with the highest increase in the nonphotochemical quenching parameter, the lowest decrease in the actual photochemical efficiency of PSⅡ and the photochemical quenching coefficient, and the maximal quantum yield of PSⅡ. The changes in these indicators demonstrated that the expression of exogenous TabZIP could improve the resistance of plants to salt stress, and of these transgenic lines obtained would lay foundation for further research into the resistance mechanism of TabZIP.

Cite this article

Download Citations
LI Yuanyuan,YANG Guang,WEI Rui,SUN Yanshuang,GUO Yuhua, ZHANG Ruiping,LIU Guifeng*. TabZIP transferred Betula platyphylla generation and salt tolerance analysis[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2013, 37(05): 6-12 https://doi.org/10.3969/j.issn.1000-2006.2013.05.002

References

[1]杨致荣,王兴春,李西明,等. 高等植物转录因子的研究进展[J].遗传,2004,26(3):403-408. Yang Z R, Wang X C, Li X M, et al. Advance on the study of transcription factors in higher plants[J]. Hereditas,2004,26(3):403-408.
[2]刘欣,李云. 转录因子与植物抗逆性研究进展[J].中国农学通报,2006,22(4):61-65. Liu X, Li Y. Transcription factors related to plant stresstolerance[J]. Chinese Agricultural Science Bulletin,2006 ,22(4):61-65.
[3]Jakoby M, Weisshaar B, DrogeLaser W,et al. bZIP transcription factors in Arabidopsis[J]. Trends Plant Sci,2002,7(3):106-111.
[4]Schutze K, Harter K, Chaban C. Posttranslational regulation of plant bZIP factors[J]. Trends Plant Sci,2008, 13(5):247-255.
[5]Else M J, Unni S L, Cathrine L. HY5 and HYH are positive regulators of nitrate reductase in seedlings and rosette stage plants[J]. Planta, 2008,227(3):559-564.
[6]Lee S C, Choi H W, Hwang I S, et al. Functional roles of the pepper pathogeninduced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses[J]. Planta,2006,224(5): 1209-1225.
[7]RodriguezUribe L, OConnell M A. A rootspecific bZIP transcription factor is responsive to water deficit stress in tepary bean (Phaseolus acutifolius) and common bean (P. vulgaris)[J]. Journal of Experimental Botany,2006, 57(6):1391-1398.
[8]Strathmann A, Kuhlmann M, Heinekamp T, et al. BZI1 specifically heterodimerises with the tobacco bZIP transcription factors BZI2, BZI3/TBZF and BZI4, and is functionally involved in flower development[J]. The Plant Journal,2001, 28(4):397-408.
[9]Kang J, Choi H, Im M, et al. Arabidopsis basic leucine zipper proteins that mediate stressresponsive abscisic acid signaling[J]. The Plant Cell Online, 2002, 14(2):343-357.
[10]Kim S, Kang J Y, Cho D I, et al. ABF2, an ABREbinding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance[J]. Plant J, 2004, 40(1):75-87.
[11]Mukherjee K, Choudhury A R, Gupta B, et al. An ABREbinding factor, OSBZ8, is highly expressed in salt tolerant cultivars than in salt sensitive cultivars of indica rice[J]. BMC Plant Biol,2006, 6(18):1-14.
[12]Gao S, Chen M, Xu Z, et al. The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants[J]. Plant Molecular Biology,2011,75(6):537-553.
[13]梁也男. 柽柳bZIP基因的克隆及耐盐功能研究[D].哈尔滨:东北林业大学, 2008. Liang Y N. Cloning and analysis of salttolerance function of a bZIP gene from Tamarix andssowii[D]. Harbin:Northeast Forestry University, 2008.
[14]吴英杰,王超,及晓宇,等. 柽柳 bZIP 基因调控耐盐相关基因的表达[J].植物生理学报,2010,46(12):1237-1242. Wu Y J, Wang C,Ji X Y, et al.Expression of salttolerant genes regulated by a bZIP gene in Tamarix hispida Willd[J]. Plant Physiology Communications,2010,46(12):1237-1242.
[15]邹永梅.北美-球悬铃木转基因受体系统的建立及遗传转化研究[D].南京:南京林业大学,2005. Zhou Y M. Highefficient tissue culture system establishing and gene transformation in Platanus occidentalis L.[D].Nanjing:Nanjing Forestry University,2005.
[16]张瑞萍. 脱水素基因逆境表达模式与白桦遗传转化研究[D].哈尔滨:东北林业大学,2009. Zhang R P. Study on expression pattern of ThDHN responding to different abiotic stress and establishment of genetic transformation of Betula platyphylla[D]. Harbin:Northeast Forestry University, 2009.
[17]王玉成,薄海侠,杨传平,等. 胡杨、柽柳总RNA提取方法的建立[J].东北林业大学学报,2003,31(5):99-100. Wang Y C, Bo H X, Yang C P,et al. A method for rapid isolation of total RNA from Tamarix and Populus euphratica Oliv[J].Journal of Northeast Forestry University,2003,31(5):99-100.
[18]Livak K J, Schmittgen T D. Analysis of relative gene expression data using realtime quantitative PCR and the 2ΔΔcT method[J]. Methods, 2001, 25(4):402-408.
[19]Carpentier S C, Witters E, Laukens K, et al. Preparation of protein extracts from recalcitrant plant tissues:an evaluation of different methods for twodimensional gel electrophoresis analysis[J]. Proteomics, 2005, 5(10): 2497-2507.
[20]王关林,方宏筠.植物基因工程[M].2版.北京:科学出版社,2002.
[21]孙仲序,杨红花,崔得才,等. 转基因杨树的抗盐性分析[J].生物工程学报,2002,18(4):481-485. Sun Z X, Yang H H, Cui D C, et al.Analysis of salt resistance on the poplar transferred with salt tolerance gene [J].Chinese Journal of Biotechnology,2002,18(4):481-485.
[22]孙宪芝,郑成淑,王秀峰,等. 高温胁迫对切花菊‘神马’光合作用与叶绿素荧光的影响[J].应用生态学报,2008,19(10): 2149-2154. Sun X Z, Zheng C S, Wang X F, et al. Effects of high temperature stress on photosyn thesis and chlorophyll fluorescence of cut flower chrysanthemum[J]. Chinese Journal of Applied Ecology,2008,19(10):2149-2154.
[23]张杰,邹学忠,杨传平,等. 不同蒙古栎种源的叶绿素荧光特性[J].东北林业大学学报, 2005, 33(3):20-21. Zhang J, Zhou X Z, Yang C P,et al. The chlorophyll fluorescence characteristic of Quercus mongolica from different provenances[J].Journal of Northeast Forestry University, 2005, 33(3):20-21.
[24]汪月霞,孙国荣,王建波,等. NaCl 胁迫下星星草幼苗 MDA 含量与膜透性及叶绿素荧光参数之间的关系[J].生态学 报,2006, 26(1):122-129. Wang Y X, Sun G H, Wang J B, et al. Relationships among MDA content,plasma membrane permeability and the chlorophyll fluorescence parameters of Puccinellia tenuiflora seedlings under NaCl stress[J]. Acta Ecologica Sinica,2006, 26(1):122-129.
[25]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448. Zhang S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance[J]. Chinese Bulletin of Botany,1999,16(4):444-448.
[26]王良桂,张春霞,彭方仁,等.干旱胁迫对几种灰楸苗木叶片荧光特性的影响[J].南京林业大学学报:自然科学版,2008,32 (6):119-122. Wang L G, Zhang C X, Peng F R,et al. Effects of drought stress on the fluorescence characteristics of four type of Catalpa spp.[J].Journal of Nanjing Forestry University:Natural Sciences Edition, 2008,32(6):119-122.
[27]徐呈祥,徐锡增. 硅对盐胁迫下金丝小枣叶绿素荧光参数和气体交换的影响[J]. 南京林业大学学报:自然科学版,2005,29 (1) :25-28. Xu C X, Xu X Z. Effects of silicon on chlorophyll fluorescence and gas exchange of Zizyphus jujuba cv.Jinsi xiaozao under salt stress[J].Journal of Nanjing Forestry University:Natural Sciences Edition, 2005,29 (1):25-28.
[28]Wang Y, Gao C, Liang Y, et al. A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants[J]. Journal of Plant Physiology,2010, 167(3):222-230.
[29]Liao Y, Zou H F, Wei W, et al. Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis[J]. Planta,2008, 228(2) :225-240.
PDF(1935985 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/