JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2019, Vol. 43 ›› Issue (03): 59-66.doi: 10.3969/j.issn.1000-2006.201810007
Previous Articles Next Articles
WANG Ying1,2, QIU Wenmin2, LI He2, HE Xuelian2, LIU Mingying2, HAN Xiaojiao2, QU Tongbao1*, ZHUO Renying2*
Online:
2019-05-15
Published:
2019-05-15
CLC Number:
WANG Ying, QIU Wenmin, LI He, HE Xuelian, LIU Mingying, HAN Xiaojiao, QU Tongbao, ZHUO Renying. Research on the response of SaWRKY7 gene to cadmium stress in Sedum alfredii Hance[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(03): 59-66.
[1] 环境保护部, 国土资源部. 全国土壤污染状况调查公报[J]. 中国环保产业, 2014, 36(5): 1689-1692. Ministry of Environmental Protection, Ministry of Land and Resources. Bulletin of national soil pollution survey [J]. China Environmental Protection Industry, 2014, 36(5): 1689-1692. [2] 庞荣丽, 王瑞萍, 谢汉忠, 等. 农业土壤中镉污染现状及污染途径分析[J]. 天津农业科学, 2016, 22(12): 87-91. DOI:10.3969/j.issn.1006-6500.2016.12.023. PANG R L, WANG R P, XIE H Z, et al. Analysis of cadmium pollution in agricultural soils and analysis of its way of pollution[J]. Tianjin Agricultural Sciences, 2016, 22(12): 87-91. [3] GALLEGO S M, PENA L B, BARCIA R A, et al. Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms[J]. Environmentaland Experimental Botany, 2012, 83: 33-46. DOI:10.1016/j.envexpbot.2012.04.006. [4] 魏树和, 周启星, 王新, 等. 超积累植物龙葵及其对镉的富集特征[J]. 环境科学, 2005, 26(3): 167-171. DOI:10.3321/j.issn:0250-3301.2005.03.034. WEI S H, ZHOU Q X, WANG X, et al. Cadmium-hyperaccumulator Solanum nigrum L. and its accumulating characteristics[J]. Chinese Journal of Environmental Science, 2005, 26(3): 167-171. [5] 刘周莉, 何兴元, 陈玮. 忍冬: 一种新发现的镉超富集植物[J]. 生态环境学报, 2013, 22(4): 666-670. DOI:10.16258/j.cnki.1674-5906.2013.04.025. LIU Z L, HE X Y, CHEN W. Lonicera japonica Thunb.: a newly discovered Cd hyper-accumulator[J]. Ecology and Environmental Sciences, 2013, 22(4): 666-670. [6] 刘威, 束文圣, 蓝崇钰. 宝山堇菜(Viola baoshanensis): 一种新的镉超富集植物[J]. 科学通报, 2003, 48(19): 2046-2049. DOI:10.3321/j.issn:0023-074X.2003.19.009. LIU W, SHU W S, LAN C Y. Viola baoshanensis: a new Cd hyper-accumulator [J]. Chinese Science Bulletin, 2003, 48(19): 2046-2049. [7] KüPPER H, LOMBI E, ZHAO F J, et al. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri[J]. Planta, 2000, 212(1): 75-84. DOI:10.1007/s004250000366. [8] 韦朝阳, 陈同斌. 重金属污染植物修复技术的研究与应用现状[J]. 地球科学进展, 2002, 17(6): 833-839. DOI:10.3321/j.issn:1001-8166.2002.06.006. WEI Z Y, CHEN T B. An pverview on the status of research and application of heavy metal phytormediation[J]. Advance in Earth Sciences, 2002, 17(6): 833-839. [9] 安婧, 宫晓双, 魏树和. 重金属污染土壤超积累植物修复关键技术的发展[J]. 生态学杂志, 2015, 34(11): 3261-3270. DOI:10.13292/j.1000-4890.20151023.025. AN J, GONG X S, WEI S H. Research progress on technologies of phytoremediation of heavy metal contaminated soils[J]. Chinese Journal of Ecology, 2015, 34(11): 3261-3270. [10] LUO Z B, HE J L, POLLE A, et al. Heavy metal accumulation and signal transduction in herbaceous and woody plants: paving the way for enhancing phytoremediation efficiency[J]. Biotechnology Advances, 2016, 34(6): 1131-1148. DOI:10.1016/j.biotechadv.2016.07.003. [11] OONO Y, YAZAWA T, KAWAHARA Y, et al. Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice[J]. PLoS One, 2014, 9(5): e96946. DOI:10.1371/journal.pone.0096946. [12] YUAN J B, BAI Y Q, CHAO Y H, et al. Genome-wide analysis reveals four key transcription factors associated with cadmium stress in creeping bentgrass(Agrostis stolonifera L.)[J]. Peer J, 2018, 6: e5191. DOI:10.7717/peerj.5191. [13] FARINATI S, DALCORSO G, VAROTTO S, et al. The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants[J]. The New Phytologist, 2010, 185(4): 964-978. DOI:10.1111/j.1469-8137.2009.03132.x. [14] TANG W, CHARLES T M, NEWTON R J. Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine(Pinus virginiana Mill.)confers multiple stress tolerance and enhances organ growth[J]. Plant Molecular Biology, 2005, 59(4): 603-617. DOI:10.1007/s11103-005-0451-z. [15] üLKER B, SOMSSICH I E. WRKY transcription factors: from DNA binding towards biological function[J]. Current Opinion in Plant Biology, 2004, 7(5): 491-498. DOI:10.1016/j.pbi.2004.07.012. [16] CHEN L G, SONG Y, LI S J, et al. The role of WRKY transcription factors in plant abiotic stresses[J]. Biochimica et Biophysica Acta(BBA)-Gene Regulatory Mechanisms, 2012, 1819(2): 120-128. DOI:10.1016/j.bbagrm.2011.09.002. [17] SONG Y, JING S J, YU D Q. Overexpression of the stress-induced OsWRKY08 improves osmotic stress tolerance in Arabidopsis[J]. Chinese Science Bulletin, 2009, 54(24): 4671-4678. DOI:10.1007/s11434-009-0710-5. [18] LEE H, CHA J, CHOI C, et al. Rice WRKY11 plays a role in pathogen defense and drought tolerance[J]. Rice, 2018, 11(1): 1-12. DOI:10.1186/s12284-018-0199-0. [19] YOKOTANI N, SATO Y, TANABE S, et al. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance[J]. Journal of Experimental Botany, 2013, 64(16): 5085-5097. DOI:10.1093/jxb/ert298. [20] GU L, WEI H, WANG H, et al. Characterization and functional analysis of GhWRKY42, a group IId WRKY gene, in upland cotton(Gossypium hirsutum L.)[J]. Bmc Genetics, 2018, 19(1): 48. DOI: 10.1186/s12863-018-0653-4. [21] ZHANG L L, CHENG J, SUN X M, et al. Overexpression of VaWRKY14 increases drought tolerance in Arabidopsis by modulating the expression of stress-related genes[J]. Plant Cell Reports, 2018. DOI: 10.1007/s00299-018-2302-9. [22] MZID R, ZORRIG W, BEN AYED R, et al. The grapevine VvWRKY2 gene enhances salt and osmotic stress tolerance in transgenic Nicotiana tabacum[J]. Biotech, 2018, 8(6): 1-15. DOI:10.1007/s13205-018-1301-4. [23] HE L, WU Y H, ZHAO Q, et al. Chrysanthemum DgWRKY2 gene enhances tolerance to salt stress in transgenic chrysanthemum[J]. International Journal of Molecular Sciences, 2018, 19(7): E2062. DOI:10.3390/ijms19072062. [24] VANDERAUWERA S, VANDENBROUCKE K, INZE A, et al. AtWRKY15 perturbation abolishes the mitochondrial stress response that steers osmotic stress tolerance in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2012, 109(49): 20113-20118. DOI:10.1073/pnas.1217516109. [25] ALI M A, AZEEM F, NAWAZ M A, et al. Transcription factors WRKY11 and WRKY17 are involved in abiotic stress responses in Arabidopsis[J]. Journal of Plant Physiology, 2018, 226: 12-21. DOI:10.1016/j.jplph.2018.04.007. [26] 彭喜旭, 白宁宁, 王海华. 响应镉胁迫的水稻WRKY15转录因子基因的分离与表达特征[J]. 中国水稻科学, 2018, 32(2): 103-110. DOI: 10.16819/j.1001-7216.2018.7056. PENG X X, BAI N N, WANG H H. Isolation and expression profiles of cadmium stress-responsive rice WRKY15 transcription factor gene[J]. Chinese Journal of Rice Science, 2018, 32(2): 103-110. [27] LIU Z Q, FANG H H, PEI Y X, et al. WRKY transcription factors down-regulate the expression of H2S-generating genes, LCD and DES in Arabidopsis thaliana[J]. Science Bulletin, 2015, 60(11): 995-1001. DOI:10.1007/s11434-015-0787-y. [28] 汪祖昊. 地理隔离与重金属污染对东南景天物种分化的影响[D]. 广州: 中山大学, 2009. WANG Z H. The effects of geographic isolation and heavy metal contamination on the speciation of Sedum alfredii[D]. Guangzhou: Sun Yat-sen University, 2009. [29] 吴龙华, 周守标, 毕德, 等. 中国景天科植物一新种: 伴矿景天[J]. 土壤, 2006, 38(5): 632-633. DOI:10.3321/j.issn:0253-9829.2006.05.022. WU L H, ZHOU S B, BI D, et al. Sedum plumbizincicola, a new species of the crassulaceae from Zhejiang, China[J]. Soils, 2006, 38(5): 632-633. [30] WU L H, LIU Y J, ZHOU S B, et al. Sedum plumbizincicola X.H. Guo et S.B. Zhou ex L.H. wu(crassulaceae): a new species from Zhejiang Province, China[J]. Plant Systematics and Evolution, 2013, 299(3): 487-498. DOI:10.1007/s00606-012-0738-x. [31] YANG X E, LONG X X, YE H B, et al. Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species(Sedum alfredii Hance)[J]. Plant and Soil, 2004, 259(1/2): 181-189. DOI:10.1023/b:plso.0000020956.24027.f2. [32] ZHANG M, ZHANG J, LU L L, et al. Functional analysis of CAX2-like transporters isolated from two ecotypes of Sedum alfredii[J]. Biologia Plantarum, 2016, 60(1): 37-47. DOI:10.1007/s10535-015-0557-3. [33] ZHANG J, ZHANG M, TIAN S K, et al. Metallothionein 2(SaMT2)from Sedum alfredii Hance confers increased Cd tolerance and accumulation in yeast and tobacco[J]. PLoS One, 2014, 9(7): e102750. DOI:10.1371/journal.pone.0102750. [34] LIU H, ZHAO H, WU L, et al. Heavy metal ATPase 3(HMA3)confers cadmium hypertolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola[J]. New Phytologist, 2017, 215(2): 687-698. DOI: 10.1111/nph.14622. [35] ZHANG M, SENOURA T, YANG X E, et al. Functional analysis of metal tolerance proteins isolated from Zn/Cd-hyperaccumulating ecotype and non-hyperaccumulating ecotype of Sedum alfredii Hance[J]. FEBS Letters, 2011, 585(16): 2604-2609. DOI:10.1016/j.febslet.2011.07.013. [36] LIU M Y, QIU W M, HE X L, et al. Functional characterization of a gene in Sedum alfredii Hance resembling rubber elongation factor endowed with functions associated with cadmium tolerance[J]. Frontiers in Plant Science, 2016, 7: 965. DOI:10.3389/fpls.2016.00965. [37] LI Z, HAN X J, SONG X X, et al. Overexpressing the Sedum alfredii Cu/Zn superoxide dismutase increased resistance to oxidative stress in transgenic Arabidopsis[J]. Frontiers in Plant Science, 2017, 8: 1010. DOI:10.3389/fpls.2017.01010. [38] 赵婷. 东南景天耐镉相关基因SaLRR的克隆与功能初步分析[D]. 乌鲁木齐: 新疆大学, 2014. ZHAO T. Cloning and molecular characterization of SaLRR gene in Sedum alfredii Hance[D]. Wulumuqi: Xinjiang University, 2014. [39] CHEN S S, HAN X J, FANG J, et al. Sedum alfredii SaNramp6 metal transporter contributes to cadmium accumulation in transgenic Arabidopsis thaliana[J]. Scientific Reports, 2017, 7: 13318. DOI:10.1038/s41598-017-13463-4. [40] ZHANG J, ZHANG M, SHOHAG M J I, et al. Enhanced expression of SaHMA3 plays critical roles in Cd hyperaccumulation and hypertolerance in Cd hyperaccumulator Sedum alfredii Hance[J]. Planta, 2016, 243(3): 577-589. DOI:10.1007/s00425-015-2429-7. [41] 刘明英, 乔桂荣, 蒋晶, 等. 矿山型东南景天cDNA表达文库构建与耐镉基因筛选[J]. 林业科学研究, 2012, 25(3): 332-338. DOI:10.3969/j.issn.1001-1498.2012.03.010. LIU M Y, QIAO G R, JIANG J, et al. Construction of stress induced full length cDNA library of Sedum alfredii and isolation of genes related to cd-tolerance[J]. Forest Research, 2012, 25(3): 332-338. [42] HAN X, YIN H, SONG X. Integration of small RNAs, degradome and transcriptome sequencing in hyperaccumulator Sedum alfredii uncovers a complex regulatory network and provides insights into cadmium phytoremediation[J]. Plant Biotechnology Journal, 2016, 14(6):1470-1483. DOI: 10.1111/pbi.12512. [43] YOO S D, CHO Y H, SHEEN J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis[J]. Nature Protocols, 2007, 2(7): 1565-1572. DOI: 10.1038/nprot.2007.199. [44] SANG J, HAN X J, LIU M Y, et al. Selection and validation of reference genes for real-time quantitative PCR in hyperaccumula-ting ecotype of Sedum alfredii under different heavy metals stresses[J]. PLoS One, 2013, 8(12): 82927. DOI:10.1371/journal.pone.0082927. [45] EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 2000, 5(5): 199-206. DOI:10.1016/s1360-1385(00)01600-9. [46] PARK C Y, LEE J H, YOO J H, et al. WRKY group IId transcription factors interact with calmodulin[J]. FEBS Letters, 2005, 579(6): 1545-1550. DOI:10.1016/j.febslet.2005.01.057. [47] LU L L, TIAN S K, ZHANG M, et al. The role of Ca pathway in Cd uptake and translocation by the hyperaccumulator Sedum alfredii[J]. Journal of Hazardous Materials, 2010, 183(1/2/3): 22-28. DOI:10.1016/j.jhazmat.2010.06.036. [48] 廖星程. 东南景天对镉的细胞吸收与积累特征及其与钙的关系[D]. 杭州: 浙江大学, 2015. LIAO X C. Cadium uptake and accumulation in Sedum alfredii at cellular levels and its association with calcium pathyway[D]. Hangzhou: Zhejiang University, 2015. [49] SUN J, AN H, SHI W, et al. Molecular cloning and characterization of GhWRKY11, a gene implicated in pathogen responses from cotton[J]. South African Journal of Botany, 2012, 81: 113-123. DOI:10.1016/j.sajb.2012.06.005. [50] 向小华, 吴新儒, 晁江涛, 等. 普通烟草WRKY基因家族的鉴定及表达分析[J]. 遗传, 2016, 38(9): 840-862. DOI:10.16288/j.yczz.16-016. XIANG X H, WU X R, CHAO J T, et al. Genome-wide identification and expression analysis of the WRKY gene family in common tobacco(Nicotiana tabacum L.)[J]. Hereditas, 2016, 38(9): 840-862. [51] XU Z L, RAZA Q, XU L, et al. GmWRKY49, a salt-responsive nuclear protein, improved root length and governed better salinity tolerance in transgenic Arabidopsis[J]. Frontiers in Plant Science, 2018, 9: 809. DOI:10.3389/fpls.2018.00809. [52] 倪志勇, 加得拉·吐留汗, 邱迎风,等. 海岛棉GbWRKY40基因的克隆及特征分析[J]. 棉花学报, 2017, 29(4): 393-400. DOI: 10.11963/1002-7807. nzycqj.20170601. NI Z Y, GARDELA T, QIU Y F, et al. Cloning and characterization of the GbWRKY40 transcription factor gene from Gossypium barbadense L.[J]. Cotton Science, 2017, 29(4): 393-400. [53] ZHOU Q Y, TIAN A G, ZOU H F, et al. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants[J]. Plant Biotechnology Journal, 2008, 6(5): 486-503. DOI:10.1111/j.1467-7652.2008.00336.x. [54] MUHAMMAD A J. CmWRKY4, CmWRKY10 and CmWRKY11 contribute to drought tolerance in chrysanthemum[D]. Nanjing: Nanjing Agricultural University, 2016. [55] 蔡荣号. 玉米WRKY转录因子IId亚族抗逆相关基因的鉴定及ZmWRKY17的功能分析[D]. 合肥:安徽农业大学, 2016. CAI R H. Identification of stress-resistant related genes of group IId WRKY transcription factor family in maize and function analysis of ZmWRKY17[D]. Hefei:Anhui Agricultural University, 2016. [56] 司爱君, 余渝, 陈红,等. 棉花逆境应答GhWRKY2基因的结构与功能预测[J]. 农业生物技术学报, 2017, 25(2):222-230. DOI:10.3969/j.issn. 1674-7968.2017.02.006. SI A J, YU Y, CHEN H, et al. Functional prediction of stress response GhWRKY2 gene in cotton(Gossypium hirsutum)[J].Journal of Agricultural Biotechnology, 2017, 25(2):222-230. [57] 王玲,刘峰,戴明剑,等. 甘蔗ScWRKY4基因的克隆与表达特性分析[J]. 作物学报, 2018, 44(9): 1367-1379. WANG L, LIU F, DAI M J, et al. Cloning and expression characteristic analysis of ScWRKY4 gene in sugarcane[J]. Acta Agronomica Sinica, 2018, 44(9): 1367-1379. [58] BAO W, WANG X, CHEN M, et al. A WRKY transcription factor, PcWRKY33, from Polygonum cuspidatum reduces salt tolerance in transgenic Arabidopsis thaliana[J]. Plant Cell Reports, 2018, 37(7): 1033-1048. DOI: 10.1007/s00299-018-2289-2. |
[1] | MIAO Lifei, YU Xiaojing, ZHANG Qiuyue, FENG Chaonian. Salt tolerance of four half-sib families of Pyrus betulaefolia Bunge from coastal areas [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 157-166. |
[2] | ZHANG Qing, WEI Shuhe, DAI Huiping, JIA Genliang. The alleviating effects of selenium on cadmium-induced toxicity in tea leaves [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(1): 200-204. |
[3] | FENG Jing, SHEN Yongbao, SHI Fenghou. Study on desiccation sensitivity ofGinkgo biloba seeds [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 193-200. |
[4] | MA Yingli, GAO Yu, YUAN Tingting, DAI Li, ZHANG Yufeng, XIE Yinfeng. Effects of heavy metal chromium stress on the photosynthetic characteristics of Indocalamus barbatus McClure [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(01): 54-60. |
[5] | CHEN Yanqiong, SHEN Yang, FAN Jialu, CHEN Xi, XU Xinyue, ZHANG Di, QIAN Gang, CHEN Ying. The effects of methyl jasmonic acid on leaf antioxidative capacity of Ilex verticillata L. seedlings under drought and re-watering [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(06): 35-43. |
[6] | ZHOU Yuhua, LIANG Youwang, PENG Fangren. Proteomic analysis of Ilex seedling leaf response to low temperature [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(06): 187-192. |
[7] | MA Yingli, GU Hui, ZHANG Yufeng, DAI Li, LI Jing, JIANG Fanglei, XIA Dajuan, XIE Yinfeng. Effects of cerium nitrate on growth and photosynthetic characteristics of Pseudostellaria heterophylla [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(04): 71-79. |
[8] | HE Yafei, ZHANG Shanshan, SUN Xin, WANG Tao, DAI Li, XIE Yinfeng. Response of photosynthetic characteristics of Pleioblastus fortunei to high frequent simulated acid rain [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(04): 49-55. |
[9] | LU Lu, ZHANG Jingbo, CHEN Jinhui, ZHOU Yanwei, CHENG Tielong. Drought resistance analysis of Nitraria billardieri seedlings [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2015, 39(06): 51-55. |
[10] | RUI Wenyi, TIAN Yunlu, ZHANG Jilin, LI Shuqin. Effect of drought stress on photosynthetic characteristic of six tree species [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2012, 36(01): 68-72. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||