
Comparative analysis on the fine root traits of the four native broad-leaved trees in the hilly region of central Sichuan Province
CHEN Junhua, ZHOU Dasong, NIU Mu, BIE Pengfei, XIE Tianzi, ZHAO Run, MU Changlong
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (1) : 31-38.
Comparative analysis on the fine root traits of the four native broad-leaved trees in the hilly region of central Sichuan Province
【Objective】 Although cypress (Cupressus funebris) plantations are the predominant type of protected forests in the central Sichuan hilly region of China, their comprehensive benefits have not yet to be realized, owing to the high-density nature of stands and single-species composition. Moreover, only a few tree species can adapt to the central Sichuan hilly region, which is characterized by shallow infertile purple soils. In order to gain scientific evidence on which to base the selection and management of protected forest species in the central Sichuan hilly region, we examined the fine root traits of four native broad-leaved tree species (Alnus cremastogyne, Camptotheca acuminata, Cinnamomum camphora and Toona sinensis), which were planted in strips cut in cypress stands to determine differences in the utilization of below-ground resources among these four species. 【Method】 In order to enhance Cupressus funebris monoculture, we examined the effects Cupressus funebris stand modification by cutting strips among the Cupressus funebris trees and replanting these with four native broad-leaved tree species ( A. cremastogyne, Camptotheca acuminata, Cinnamomum camphora and T. sinensis) 7 years age. Five typical healthy individuals of each tree species were selected and we extracted whole root systems in order to analyze features such as fine root (diameter < 2 mm) biomass traits, morphological characteristics, and branching structure. 【Result】 ① We observed that the root biomass density of fine roots was highest in A. cremastogyne [(0.156 ± 0.030) kg/m 3], which was 15.67, 11.72 and 4.61 times higher than that ofCamptotheca acuminata, Cinnamomum camphora and T. sinensis, respectively. The root surface area density of A. cremastogyne, Camptotheca acuminata, Cinnamomum camphora and T. sinensis was 0.99, 0.45, 0.68 and 1.13 m2/m3, respectively, and the root length density was 110.33, 10.58, 26.64 and 97.56 m/m3, respectively. ② The average root diameter of the four species was ranked as Camptotheca acuminata (1.67 mm) > Cinnamomum camphora (1.06 mm) > T. sinensis (0.77 mm) > A. cremastogyne (0.73 mm). The specific root lengths for A. cremastogyne, Camptotheca acuminata, Cinnamomum camphora and T. sinensis were 62.54, 49.31, 81.53, 287.50 cm/g, whereas their specific root surface areas were 13.58, 25.61, 27.35 and 83.15 cm2/g, respectively. The root tissue density of A. cremastogyne was found to be significantly higher than that of the other three species (df = 3, F = 360.726, P < 0.05). ③ The specific root tip number (df = 3, F = 391.659, P < 0.01), root tip density (df = 3, F = 103.857, P < 0.05), and root fork density (df = 3, F = 104.617, P < 0.05) of A. cremastogyne were 1 056 tips/g, 2.37 tips/cm and 2.65 tips/cm respectively, which were also significantly higher than those of the other three species. ④ Although the total N content in the fine roots of A. cremastogyne was 33.27%, 88.65% and 21.93% higher than that of Camptotheca acuminata, Cinnamomum camphora and T. sinensis, the reserves of total C, total P and total K content were found to be highest in T. sinensis. 【Conclusion】 In the early stages of stand transformation, A. cremastogyne and T. sinensis (which are the light demanding tree species) have higher root biomass density and stronger competitiveness due to the abundance of sunlight in the cut strips. Furthermore, during the early stage of this study, the experimental stand was characterized by poor soil quality and low soil moisture content, conditions under which these two shallow-rooted tree species can gain access to larger amounts soil space and nutrients by increasing the branching of horizontal roots. In contrast,Camptotheca camphora and Cinnamomum acuminate acquire soil space and nutrients by increasing fine-root diameter and vertical depth. Collectively, the results of this study indicate that there are significant differences in the fine-root traits of four examined broad-leaved trees species growing in the central Sichuan hilly region of China, and that these difference reflect differences in the strategies used for resource acquisition.
native broad-leaved tree / fine root trait / fine root morphological characteristic / fine root branching structure / nutrient content / hilly region of central Sichuan Province
[1] |
李贤伟, 罗承德, 胡庭兴, 等. 长江上游退化森林生态系统恢复与重建刍议[J]. 生态学报, 2001, 21(12):2117-2124.
|
[2] |
龚固堂, 牛牧, 慕长龙, 等. 间伐强度对柏木人工林生长及林下植物的影响[J]. 林业科学, 2015, 51(4):8-15.
|
[3] |
陈俊华, 龚固堂, 胡道亮, 等. 川中丘陵区低效防护林 “开窗补阔”改造模式对不同施肥措施的响应[J]. 四川林业科技, 2011, 32(1):74-79.
|
[4] |
黎燕琼, 龚固堂, 郑绍伟, 等. 低效柏木纯林不同改造措施对水土保持功能的影响[J]. 生态学报, 2013, 33(3):934-943.
|
[5] |
刘浩. 川中丘陵柏木低效林改造初期水土保持效益研究[D]. 雅安: 四川农业大学, 2014.
|
[6] |
张翠翠. 川中丘陵区柏木低效林不同改造模式对水土流失及土壤质量的影响[D]. 雅安:四川农业大学, 2016.
|
[7] |
潘业田. 林窗改造模式对川中丘陵区柏木低效林植物及土壤动物多样性的影响[D]. 雅安:四川农业大学, 2014.
|
[8] |
柏方敏, 戴成栋, 陈朝祖, 等. 国内外防护林研究综述[J]. 湖南林业科技, 2010, 37(5):8-14.
|
[9] |
张宗学, 鲁时燕, 牛牧, 等. 川中丘陵区优良适宜树种选择[J]. 四川林业科技, 2014, 35(5):17-22.
|
[10] |
牛牧, 陈俊华, 龚固堂, 等. 川中丘陵区低效防护林分“开窗补阔”改造试验研究[J]. 西北林学院学报, 2015, 30(1):39-45.
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
朱万泽, 王金锡, 薛建辉, 等. 四川桤木光合生理特性研究[J]. 西南林学院学报, 2001, 21(4):196-204.
|
[18] |
曾淑燕, 李映珍. 喜树生物学特性与栽培技术[J]. 广东林业科技, 2007, 23(1):118-120.
|
[19] |
谭桂菲, 安家成, 黎贵卿, 等. 15年生香樟人工林的生物量及生产力[J]. 广西林业科学. 2017, 46(4):369-374.
|
[20] |
陈奋飞. 香椿联合固氮菌的筛选及回接[D]. 福州:福建师范大学, 2007.
|
[21] |
王韦韦, 熊德成, 黄锦学, 等. 亚热带不同演替树种米槠和马尾松细根性状对比研究[J]. 生态学报, 2015, 35(17):5813-5821.
|
[22] |
文仕知, 田大伦, 杨丽丽, 等. 桤木人工林的碳密度、碳库及碳吸存特征[J]. 林业科学, 2010, 46(6):15-21.
|
[23] |
陈良华, 徐睿, 杨万勤, 等. Cd污染下香樟和油樟幼苗N、P、K的积累与分配特征[J]. 西北农林科技大学学报(自然科学版), 2016, 44(10):91-99.
|
[24] |
管磊, 周桂香, 朱琴, 等. 四川盆地香椿生长规律初步研究[J]. 四川林业科技, 2011, 32(2):100-103.
|
[25] |
杨玉坡, 李承彪. 四川森林[M]. 北京: 中国林业出版社, 1988:1281-1300.
|
[26] |
|
[27] |
|
[28] |
|
[29] |
蔡洁, 文仕知, 何功秀, 等. 湘北四川桤木人工林根系空间分布特征[J]. 浙江林业科技, 2010, 30(5):42-45.
|
[30] |
王海风, 肖兴翠, 龚细娟, 等. 桤木生物量及根系分布规律[J]. 湖南林业科技, 2013, 40(3):39-42.
|
[31] |
|
[32] |
刘波, 余艳峰, 张贇齐, 等. 亚热带常绿阔叶林不同林龄细根生物量及其养分[J]. 南京林业大学学报(自然科学版), 2008, 32(5):81-84.
|
[33] |
张云鹏, 崔建国. 油松蒙古栎混交林细根生物量及养分现存量研究[J]. 浙江林业科技, 2007, 27(5):16-20.
|
[34] |
|
[35] |
梅莉, 王政权, 张秀娟, 等. 施氮肥对水曲柳人工林细根生产和周转的影响[J]. 生态学杂志, 2008, 27(10):1663-1668.
|
/
〈 |
|
〉 |