JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (4): 143-150.doi: 10.3969/j.issn.1000-2006.201911014
Previous Articles Next Articles
LU Weiwei(), GENG Huili, ZHANG Yirui, RUAN Honghua
Received:
2019-11-11
Revised:
2020-04-08
Online:
2020-07-22
Published:
2021-07-09
CLC Number:
LU Weiwei, GENG Huili, ZHANG Yirui, RUAN Honghua. Effects of biochars pyrolyzed at different temperatures on soil microbial community in a poplar plantation in coastal eastern China[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(4): 143-150.
Table 1
Basic physicochemical properties of biochars pyrolyzed at different temperatures"
制备温度/ ℃ pyrolysis temperature | pH | ω(TC)/% | ω(TN)/% | m(C)/ m(N) | 铵态氮 含量/ (mg·kg-1) NH4+?N content | 硝态氮 含量/ (mg·kg-1) NO3-?N content | 有机碳功能团比例/% percentage of OC functional groups | 芳香性指数 aromaticity index | |||
---|---|---|---|---|---|---|---|---|---|---|---|
烷基碳 alkyl C | O/N -烷基碳 O/N- alkyl C | 芳基碳 aryl C | 羰基碳 carbonyl C | ||||||||
300 | 8.23 | 59.6 | 3.98 | 15.0 | 27.7 | 65.8 | 25.60 | 6.93 | 59.4 | 8.11 | 0.65 |
500 | 9.86 | 62.7 | 3.18 | 19.7 | 28.8 | 11.7 | 4.15 | 2.58 | 89.5 | 3.74 | 0.93 |
Table 2
The correlation analysis between soil pH, relative abundances of various microbial groups and exocellular enzyme activities"
指标 index | pH | β?D?葡萄糖苷酶 β?D?glucosidase | 纤维二糖糖苷酶 cellobiosidase | 多酚氧化酶 phenol oxidase | 漆酶 laccase | 革兰氏阴性菌 G- bacteria | 革兰氏阳性菌 G+ bacteria | 细菌 bacteria | 真菌 fungi | 放线菌 actinomycetes |
---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | |||||||||
β-D-葡萄糖苷酶 | ?0.204 | 1 | ||||||||
纤维二糖糖苷酶 | 0.338 | ?0.076 | 1 | |||||||
多酚氧化酶 | ?0.337 | ?0.258 | 0.216 | 1 | ||||||
漆酶 | ?0.036 | 0.038 | 0.044 | ?0.598* | 1 | |||||
革兰氏阴性菌 | 0.095 | ?0.262 | 0.091 | 0.285 | ?0.291 | 1 | ||||
革兰氏阳性菌 | ?0.548* | ?0.170 | ?0.149 | 0.252 | 0.110 | 0.022 | 1 | |||
细菌 | ?0.169 | ?0.318 | ?0.016 | ?0.056 | 0.467 | ? 0.499 | 0.544* | 1 | ||
真菌 | 0.257 | 0.045 | 0.124 | 0.088 | ?0.372 | 0.848** | ? 0.361 | ?0.803** | 1 | |
放线菌 | ?0.074 | 0.463 | 0.043 | ?0.016 | ?0.173 | 0.321 | ? 0.289 | ?0.827** | 0.518* | 1 |
1 | CHENG L, ZHANG N F, YUAN M T, et al. Warming enhances old organic carbon decomposition through altering functional microbial communities[J]. Isme J, 2017, 11(8): 1825–1835. DOI: 10.1038/ismej.2017.48. |
2 | SINANBAUGH R L, LAUBER C L, WEINTRAUB M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecol Lett, 2008, 11(11): 1252–1264. DOI: 10.1111/j.1461-0248.2008.01245.x. |
3 | LEHMANN J, GAUNT J, RONDON M. Bio⁃char sequestration in terrestrial ecosystems: a review[J]. Mitig Adapt Strat Gl, 2006, 11(2): 403–427. DOI: 10.1007/s11027-005-9006-5. |
4 | MUKHERJEE A, ZIMMERMAN A R. Organic carbon and nu⁃trient release from a range of laboratory⁃produced biochars and biochar⁃soil mixtures[J]. Geoderma, 2013, 193: 122–130. DOI: 10.1016/j.geoderma.2012.10.002. |
5 | 周之栋, 卜晓莉, 吴永波, 等. 生物炭对土壤微生物特性影响的研究进展[J]. 南京林业大学学报(自然科学版), 2016, 40(6): 1–8. |
ZHOU Z D, BU X L, WU Y B, et al. Research advances in biochar effects on soil microbial properties[J]. J Nanjing For Univ(Nat Sci Ed), 2016, 40(6): 1–8. DOI: 10. 3969/j.issn.1000-2006.2016.06.001. | |
6 | 王国兵, 王瑞, 徐瑾, 等. 生物炭对杨树人工林土壤微生物生物量碳、氮、磷及其化学计量特征的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(2): 1–6. |
WANG G B, WANG R, XU J, et al. Effects of biochar application on microbial biomass C, N, P and stoichiometry characteristics of poplar plantation soil[J]. J Nanjing For Univ(Nat Sci Ed), 2019, 43(2): 1–6. DOI: 10.3969/j.issn.1000-2006.201803022. | |
7 | SINGH B, SINGH B P, COWIE A L. Characterisation and eva⁃luation of biochars for their application as a soil amendment[J]. Aust J Soil Res, 2010, 48(7): 516–525. DOI: 10.1071/sr10058. |
8 | WETTERSTEDT J Å M, PERSSON T, ÅGREN G I. Temperature sensitivity and substrate quality in soil organic matter decomposition: results of an incubation study with three substrates[J]. Global Change Biol, 2009, 16(6): 1806–1819. DOI: 10.1111/j.1365-2486.2009.02112.x. |
9 | DEMPSTER D N, GLEESON D B, SOLAIMAN Z M, et al. Decreased soil microbial biomass and nitrogen mineralisation with Eucalyptus biochar addition to a coarse textured soil[J]. Plant Soil, 2012, 354(1/2): 311–324. DOI: 10.1007/s11104-011-1067-5. |
10 | 李明, 李忠佩, 刘明, 等. 不同秸秆生物炭对红壤性水稻土养分及微生物群落结构的影响[J]. 中国农业科学, 2015, 48(7): 1361–1369. |
LI M, LI Z P, LIU M, et al. Effects of different straw biochar on nutrient and microbial community structure of a red soil paddy soil[J]. Sci Agric Sin, 2015, 48(7): 1361–1369. DOI: 10.3864/j.issn.0578-1752.2015.07.11. | |
11 | BAMMINGER C, ZAISER N, ZINSSER P, et al. Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil[J]. Biol Fert Soils, 2014, 50(8): 1189–1200. DOI: 10.1007/s00374-014-0968-x. |
12 | RUTIGLIANO F A, ROMANO M, MARZAIOLI R, et al. Effect of biochar addition on soil microbial community in a wheat crop[J]. Eur J Soil Biol, 2014, 60: 9–15. DOI: 10.1016/j.ejsobi.2013.10.007. |
13 | WANG R Z, GIBSON C D, BERRY T D, et al. Photooxidation of pyrogenic organic matter reduces its reactive, labile C pool and the apparent soil oxidative microbial enzyme response[J]. Geoderma, 2017, 293: 10–18. DOI: 10.1016/j.geoderma.2017.01.011. |
14 | GIBSON C, HATTON P J, BIRD J A, et al. Tree taxa and pyro⁃lysis temperature interact to control pyrogenic organic matter induced native soil organic carbon priming[J]. Soil Biol Biochem, 2018, 119: 174–183. DOI: 10.1016/j.soilbio.2018.01.022. |
15 | AMELOOT N, DE NEVE S, JEGAJEEVAGAN K, et al. Short⁃term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils[J]. Soil Biol Biochem, 2013, 57: 401–410. DOI: 10.1016/j.soilbio.2012.10.025. |
16 | 方精云, 陈安平. 中国森林植被碳库的动态变化及其意义[J]. 植物学报, 2001, 43(9): 967–973. |
FANG J Y, CHEN A P. Dynamic forest biomass carbon pools in China and their significance[J]. Acta Bot Sin, 2001, 43(9): 967–973. DOI:10.3321/j.issn:1672-9072.2001.09.014. | |
17 | 国家林业局森林资源管理司. 第七次全国森林资源清查及森林资源状况[J]. 林业资源管理, 2010(1): 1–8. Department of Forest Resources Management, Administration of Forestry of China. The sevevth national forest resources inventory and the status of forest resources[J]. Forest Resources Management, 2010(1): 1–8. DOI:10.3969/j.issn.1002-6622.2010.01.001. |
18 | 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. |
LU R K. Methods for chemical analysis of soil agriculture[M]. Beijing: China Agriculture Science and Technology Press, 2000. | |
19 | LU W W, DING W X, ZHANG J H, et al. Biochar suppressed the decomposition of organic carbon in a cultivated sandy loam soil: a negative priming effect[J]. Soil Biol Biochem, 2014, 76: 12–21. DOI: 10.1016/j.soilbio.2014.04.029. |
20 | LUO Y, DURENKAMP M, DE NOBILI M, et al. Short term soil priming effects and the mineralisation of biochar following its incorporation to soils of different pH[J]. Soil Biol Biochem, 2011, 43(11): 2304–2314. DOI: 10.1016/j.soilbio. 2011.07.020. |
21 | LU W W, DING W X, ZHANG J H, et al. Nitrogen amendment stimulated decomposition of maize straw⁃derived biochar in a sandy loam soil: a short⁃term study[J]. Plos One, 2015, 10(7): e0133131. DOI: 10.1371/journal.pone.0133131. |
22 | ÅFROSTEGÅRD, TUNLID A, BÅÅTH E. Microbial biomass measured as total lipid phosphate in soils of different organic content[J]. J Microbiol Methods, 1991, 14(3): 151–163. DOI: 10.1016/0167-7012(91)90018-1. |
23 | ALLISON S D, VITOUSEK P M. Responses of extracellular enzymes to simple and complex nutrient inputs[J]. Soil Biol Biochem, 2005, 37(5): 937–944. DOI: 10.1016/j.soilbio.2004.09.014. |
24 | WALDROP M, BALSER T, FIRESTONE M. Linking microbial community composition to function in a tropical soil[J]. Soil Biol Biochem, 2000, 32(13): 1837–1846. DOI: 10.1016/S0038-0717(00)00157-7. |
25 | 苏宝玲, 王月阳, 白震, 等. ABTS底物检测漆酶活力条件和算法比较: 以长白山两种林分土壤为例[J]. 土壤通报, 2016, 47(5): 1162–1168. |
SU B L, WANG Y Y, BAI Z, et al. Comparisons of experiment conditions and calculation methods for laccase activity detection with ABTS-A case study with 2 forest stands in Changbai Mountain[J]. Chin J Soil Sci, 2016, 47(5): 1162–1168. DOI: 10.19336/j.cnki.trtb.2016.05.22. | |
26 | ARTZ R R E, REID E, ANDERSON I C, et al. 2009. Long term repeated prescribed burning increases evenness in the basidiomycete laccase gene pool in forest soils[J]. Fems Microbiol Ecol,2009, 67(3): 397–410. DOI: 10.1111/j.1574-6941.2009.00650.x. |
27 | BUDAI A, RASSE D P, LAGOMARSINO A, et al. Biochar persistence, priming and microbial responses to pyrolysis temperature series[J]. Biol Fert Soils, 2016, 52(6): 749–761. DOI: 10.1007/s00374-016-1116-6. |
28 | 虞竹韵. 生物质炭引起土壤激发效应及其机理[D]. 杭州: 浙江大学, 2017. |
YU Z Y. Biochar⁃induced soil priming effects and associated mechanisms[D]. Hangzhou: Zhejiang University, 2017. | |
29 | FARRELL M, KUHN T K, MACDONALD L M, et al. Microbial utilisation of biochar⁃derived carbon[J]. Sci Total Environ, 2013, 465(6): 288–297. DOI: 10.1016/j.scitotenv. 2013. 03.090. |
30 | MUHAMMAD N, DAI Z M, XIAO K C, et al. Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical pro⁃perties[J]. Geoderma, 2014, 226/227: 270–278. DOI: 10.1016/j.geoderma.2014.01.023. |
31 | SHENG Y Q, ZHAN Y, ZHU L Z. Reduced carbon sequestration potential of biochar in acidic soil[J]. Sci Total Environ, 2016, 572: 129–137. DOI: 10.1016/j.scitotenv.2016.07.140. |
32 | YU Z, CHEN L, PAN S, et al. Feedstock determines biochar⁃induced soil priming effects by stimulating the activity of specific microorganisms[J]. Eur J Soil Sci, 2018, 69(3): 521–534. DOI: 10.1111/ejss.12542. |
33 | SHENG Y, ZHU L. Biochar alters microbial community and carbon sequestration potential across different soil pH[J]. Sci Total Environ, 2018, 622/623: 1391–1399. DOI: 10.1016/j.scitotenv.2017.11.337. |
34 | KHADEM A, RAIESI F. Influence of biochar on potential enzyme activities in two calcareous soils of contrasting texture[J]. Geoderma, 2017, 308: 149–158. DOI: 10.1016/j.geoderma.2017.08.004. |
35 | JAIN S, MISHRA D, KHARE P, et al. Impact of biochar amendment on enzymatic resilience properties of mine spoils[J]. Sci Total Environ, 2016, 544: 410–421. DOI: 10.1016/j.scitotenv.2015.11.011. |
36 | LEHMANN J, RILLIG M C, THIES J, et al. Biochar effects on soil biota: a review[J]. Soil Biol Biochem, 2011, 43(9): 1812–1836. DOI: 10.1016/j.soilbio.2011.04.022. |
37 | MUKHERJEE A, LAL R, ZIMMERMAN A R. Effects of biochar and other amendments on the physical properties and greenhouse gas emissions of an artificially degraded soil[J]. Sci Total Environ, 2014, 487: 26–36. DOI: 10.1016/j.scitotenv.2014.03.141. |
38 | 韩剑宏, 李艳伟, 姚卫华, 等. 玉米秸秆和污泥共热解制备的生物质炭及其对盐碱土壤理化性质的影响[J]. 水土保持通报, 2017, 37(4): 92–98, 105. |
HAN J H, LI Y W, YAO W H, et al. Co⁃pyrolysis preparing biochar with corn straw and sewage sludge and its effects on saline soil improvement[J]. Bull Soil Water Conserv, 2017, 37(4): 92–98, 105. DOI: 10.13961/j.cnki.stbctb.2017.04.016. | |
39 | YANG F, CAO X D, GAO B, et al. Short⁃term effects of rice straw biochar on sorption, emission, and transformation of soil NH4+⁃N[J]. Environ Sci Pollut Res, 2015, 22(12): 9184–9192. DOI: 10.1007/s11356-014-4067-1. |
40 | SHEN C C, SHI Y, FAN K K, et al. Soil pH dominates elevational diversity pattern for bacteria in high elevation alkaline soils on the Tibetan Plateau[J]. Fems Microbiol Ecol, 2019, 95(2):1-9. DOI: 10.1093/femsec/fiz003. |
41 | 虞璐. 生物质炭对酸化土壤的改良效应及其对土壤硝化作用的影响[D]. 杭州: 浙江大学, 2019. |
YU L. The effect of biochar on acidic soil amelioration and soil nitrification[D]. Hangzhou: Zhejiang University, 2019. | |
42 | LAMMIRATO G, MILTNER A, KAESTNER M. Effects of wood char and activated carbon on the hydrolysis of cellobiose by β⁃glucosidase from Aspergillusniger[J]. Soil Biol Biochem, 2011, 43(9): 1936–1942. DOI: 10.1016/j.soilbio.2011.05.021. |
43 | 曹延珺, 徐华东, 王立海, 等. 土壤理化性质对腐朽红松根部土壤微生物数量的影响[J]. 森林工程, 2018,34(2):45-49. |
CAO Y J, XU H D, WANG L H, et al. Effect of soil physical⁃chemical properties on quantity of microorganisms in rhizospheric soil of rotten Korean pine[J]. Forest Engineering, 2018,34(2):45-49. DOI:10.16270/j.cnki.slgc.2018.02.002. | |
44 | CHEN J H, LIU X Y, LI L Q, et al. Consistent increase in abundance and diversity but variable change in community composition of bacteria in topsoil of rice paddy under short term biochar treatment across three sites from South China[J]. Appl Soil Ecol, 2015, 91: 68–79. DOI: 10.1016/j.apsoil.2015.02.012. |
[1] | GUO Congcong, SHEN Yongbao, SHI Fenghou. Effects of temperature on stored substance metabolism and enzyme activity during germination of Pinus bungeana seeds [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 25-34. |
[2] | WANG Ji, FANG Shengzuo. Effects of different anti-browning agents on enzyme activity and growth in callus of Cyclocarya paliurus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 167-174. |
[3] | YAN Zhengming, RUAN Honghua, LIAO Jiahui, SHI Ke, NI Juanping, CAO Guohua, SHEN Caiqin, DING Xuenong, ZHAO Xiaolong, ZHUANG Xin. Abundance and diversity of soil beetles on the forest floor in different aged poplar plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 236-242. |
[4] | XU Chen, RUAN Honghua, WU Xiaoqiao, XIE Youchao, YANG Yan. Progresses in drought stress on the accumulation and turnover of soil organic carbon in forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 195-206. |
[5] | LIAO Yangwenke, ZHANG Peiyao, ZHANG Qingyue, LI Xiaogang. Advances in salt-tolerant mechanisms of trees and forestation techniques on saline-alkali land [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 96-104. |
[6] | LIU Qianqian, PENG Xiaonan, LIU Xin, WANG Shutian, DAI Kanglong, XU Haibin, DONG Li’na, ZHANG Jinchi. Seasonal variation characteristics of soil quality in Zijin Mountain under the disturbance of trample [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 185-193. |
[7] | ZHANG Xiaorong, DUAN Guangde, HAO Longfei, LIU Tingyan, ZHANG You, ZHANG Shengxi. Responses of the non-structural carbohydrates and rhizosphere soil enzymes of Clematis fruticosa to nitrogen deposition and inoculation mycorrhizal fungi [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 171-178. |
[8] | WANG Runsong, XU Hanmei, CAO Guohua, SHEN Caiqin, RUAN Honghua. Effects of applying biogas slurry on the morphological characteristics of fine roots of poplar plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 119-124. |
[9] | WANG Runsong, SUN Yuan, XU Hanmei, CAO Guohua, SHEN Caiqin, RUAN Honghua. Effects of biogas slurry application on fine root biomass of poplar plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 123-129. |
[10] | MA Yongchun, SHE Chengqi, FANG Shengzuo. Effects of pruning methods on growth, photosynthetic leaf area and plumpness of trunk segment in poplar plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 137-142. |
[11] | WANG Rui, WANG Guobing, XU Jin, XU Xiao. Effects of litterfalls and earthworms on distribution of soil aggregates and carbon and nitrogen content in poplar plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 25-29. |
[12] | YAO Jingjing, FENG Xiangqian, XIAO He, ZHENG Yu, ZHANG Chengliang. Improvement effects of different solid waste and their disposal by products on saline-alkali soil in Huanghua Port [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 45-52. |
[13] | WANG Guobing, XU Jin, XU Xiao, RUAN Honghua, CAO Guohua. Effects of earthworms and litterfalls on the soil enzyme activities of poplar plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 8-14. |
[14] | LI Na, ZHU Peilin, FENG Cai, WEN Minxue, FANG Shengzuo, SHANG Xulan. Variations in physiological characteristics of rootstock-scion and its relationship to graft compatibility during the grafting union process of Cyclocarya paliurus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(1): 13-20. |
[15] | DING Sihui, FANG Shengzuo, TIAN Ye, SONG Ziqi, ZHANG Yanhua. Analysis and evaluation on physicochemical properties of poplar biochar at different pyrolysis temperatures [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 193-200. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||