Effects of NaN3 on Sapium sebiferum seed germination and seedling growth

CHEN Li, ZHU Chao, ZHU Qingxiang, WANG Cuiming, BAO Jiashu, MO Chen, SHI Tingting, WAN Zhibing

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (4) : 47-54.

PDF(1175 KB)
PDF(1175 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (4) : 47-54. DOI: 10.3969/j.issn.1000-2006.202002044

Effects of NaN3 on Sapium sebiferum seed germination and seedling growth

Author information +
History +

Abstract

Objective

We investigated the effects of NaN3 on Sapium sebiferum seed germination and seedling growth, so as to provide a theoretical basis for establishing a technical system for screening mutants of early quality of Sapium sebiferum.

Method

Eight contents of NaN3 (0, 5, 10, 15, 20, 25, 30, 35 mmol/L) were tested to study the effects of NaN3 solution concentration on the seed germination percentage and seedling growth. We treated the seeds of Sapium sebiferum by mutagenesis, measured the seedling rate, seedling growth index, biomass, basic photosynthetic parameters of leaves, SPAD value and ACI value of leaves, and compared the changes of their growth and photosynthetic capacity.

Result

The seed germination, seedling growth and the effects of photosynthetic capacity of Sapium sebiferum under different concentrations of NaN3 have significant differences. NaN3 treatment had an inhibiting effect on the germination rate of Sapium sebiferum, with the increase of concentrations, the inhibitory effect was enhanced. The germination rate was the lowest at 35 mmol/L, and the inhibitory index reached 74.31%. Seedling height, biomass, total root length, specific surface area and root tip number of seedlings treated with 20 mmol/L were significantly higher than those treated with other concentrations, and the response trend to NaN3 concentration was basically the same, showing a phenomenon of “low promoting and high inhibiting”. The net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr) and water utilization rate (EWUE) of seedling leaves under NaN3 20 mmol/L treatment were the highest, significantly higher than the other treatments, and the intercellular carbon dioxide concentration (Ci) was the lowest. The effect of NaN3 on the SPAD value and ACI value of the leaves increased first and then decreased with the increase of the concentration, and the effect on the SPAD value of the leaves was significantly greater than that of ACI value, but the 20 mmol/L treatment was the best and significantly greater than the other treatments.

Conclusion

With the increase of concentration of NaN3, Sapium sebiferum seed germination rate is lower and lower, closing to the half lethal concentration which is 20—30 mmol/L,seedling growth and Pn, Gs, Tr, EWUE, SPAD and ACI values show a trend of increasing initially and decreasing later, both Ci and root-cap ratio decrease initially and increase later, and have different responses to NaN3. Through the comprehensive analysis, the suitable condition for NaN3 mutation treatment of Sapium sebiferum seeds is 20 mmol/L for 6 h. These results provideu technical support for the research on NaN3 mutagenesis breeding of Sapium sebiferum, and can also be used as a theoretical reference for the breeding of new varieties of Sapium sebiferum, the promotion of superior varieties and the production practice.

Key words

Sapium sebiferum / NaN3 mutagenesis / seeding growth / photosynthetic characteristics / mutation breeding

Cite this article

Download Citations
CHEN Li, ZHU Chao, ZHU Qingxiang, WANG Cuiming, BAO Jiashu, MO Chen, SHI Tingting, WAN Zhibing. Effects of NaN3 on Sapium sebiferum seed germination and seedling growth[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2020, 44(4): 47-54 https://doi.org/10.3969/j.issn.1000-2006.202002044

References

1 SALIM K,FAHAD A,FIROZ A. Sodium Azide:a chemical mutagen for enhancement of agronomic traits of crop plants[J]. Environment & We an International Journal of Science &Technology,2009,4:1-21.
2 董颖苹,连勇,何庆才,等.植物化学诱变技术在育种中的运用及其进展Ⅰ:化学诱变技术及诱变效率[J].种子,2005,24(7):54-58.
2 DONG Y P,LIAN Y,HE Q C,et al. The application and development of the chemical mutation technique applied in breeding Ⅰ:the chemical mutation technique and the effects[J]. Seed,2005,24(7):54-58.DOI:10.16590/j.cnki.1001-4705.2005.07.069.
3 OLSEN O,WANG X,WETTSTEIN D. Sodium azide mutagenesis: preferential generation of A·T→G·C transitions in the barley Ant18 gene[J]. Proceedings of the National Academy of Sciences of the United States of America,1993,90(17):8043-8047.DOI:10.1073/pnas.90.17.8043.
4 任学良,王轶,史跃伟,等. γ射线与NaN3处理对烟草种子活力的影响[J]. 烟草科技,2008,41(6):51-55.
4 REN X L,WANG Y,SHI Y W,et al. Effects of γ?ray and NaN3 treatments on tobacco seed vigor[J].Tobacco Science & Technology,2008,41(6):51-55.DOI:10.3969/j.issn.1002-0861.2008.06.013.
5 王娜,李明飞,王超杰,等. 基于SmartGrain软件的小麦NaN3诱变群体籽粒性状分析[J]. 麦类作物学报,2015,35(9):1222-1228.
5 WANG N,LI M F,WANG C J,et al. Analysis on grain trait of a NaN3 mutagenized population in common wheat (Tritium aestivum) based on SmartGrain software[J]. Journal of Triticeae Crops,2015,35(9):1222-1228. DOI:10.7606/j.issn.1009-1041.2015.09.07.
6 谢嘉华,夏英武,舒庆尧. 水稻离子注入和叠氮化钠复合处理生物学效应研究[J]. 核农学通报,1993,24(2):84-87.
6 XIE J H, XIA Y W, SHU Q Y. Studies on biological effects of rice by ion implantation and sodium azide combined treatment [J]. Journal of Nuclear Agricultural Sciences,1993,24(2):84-87.
7 姜振峰,刘志华,李文滨,等. 叠氮化钠对大豆M1的生物学诱变效应[J]. 核农学报,2006,20(3):208-210.
7 JIANG Z F, LIU Z H, LI W B,et al. M1 mutagenic effect on soybean induced by NaN3 [J]. Journal of Nuclear Agricultural Sciences,2006,20(3):208-210. DOI:10.3969/j.issn.1000-8551.2006.03.011.
8 刘 玲,王 丹,黎熠睿,等.60Co-γ射线对小苍兰的生物学效应[J].南京林业大学学报(自然科学版),2019,43(1):186-192.
8  LIU L,WANG D,LI Y R,et al.The biological effects of 60Co?γ rays on Freesia refracta[J].J Nanjing For Univ(Nat Sci Ed),2019,43(1):186-192.DOI:10.3969/j.issn.1000-2006.201801024.
9 陈宇. 化学诱导巨尾桉耐寒突变的叶绿素荧光动力学差异分析[D]. 福州:福建农林大学,2009. CHEN Y. Otherness analysis of chilling stress on chlorophy II fluorescence kinetics of mutational E.grandis×E.urophylla[D]. Fuzhou:Fujian Agriculture and Forestry University,2009.
10 胡瑞阳,孙宇涵,吴博,等. NaN3 处理对杉木种子发芽及幼苗生长的影响[J].东北林业大学学报,2018,46(5):6-11.
10 HU R Y,SUN Y H,WU B,et al. Effect of NaN3 on Cunninghamia lanceolata seed germination and seedlings growth[J].Journal of Northeast Forestry University,2018,46(5):6-11. DOI:10.13759/j.cnki.dlxb.2018.05.002.
11 刘继虎,孔思梦,伍汉斌,等. NaN3对南紫薇诱变剂量的确定[J]. 黑龙江八一农垦大学学报,2018,30(3):10-14.
11 LIU J H,KONG S M,WU H B,et al. Determination of the suitable mutation dose of NaN3 for Lagerstroemia indica L. [J]. Journal of Heilongjiang Bayi Agricultural University,2018,30(3):10-14. DOI:10.3969/j.issn.1002-2090.2018.03.002.
12 中国科学院, 中国植物志编辑委员会. 中国植物志第44卷:第3分册[M].北京:科学出版社,2016. Chinese Academy of Sciences, Editorial Committee of flora of China. Flora of China Volume44:Volume 3 [M]. Beijing:Science Press,2016.
13 吴桂英. 乌桕梓油基聚氨酯纳米复合材料的生物—化学法合成及表征[D]. 武汉:华中科技大学,2017. WU G Y. Synthesis and characterization of Sapium sebiferum oil:based polyurethane nanocomposites by biological and chemical methods[D].Wuhan:Huazhong University of Science and Technology,2017.
14 邓先珍,王晓光,向珊珊,等. 乌桕采穗圃营建技术研究[J]. 经济林研究,2010,28(4):93-98.
14 DENG X Z,WANG X G,XIANG S S,et al. Building techniques of cutting orchard in Sapium sebiferum [J]. Nonwood Forest Research,2010,28(4):93-98. DOI:10.3969/j.issn.1003-8981.2010.04.016.
15 PARRY M A,MADGWICK P J,BAYON C,et al. Mutation discovery for crop improvement[J]. Journal of Experimental Botany,2009,60(10):2817-2825. DOI:10.1093/jxb/erp189.
16 EMRANI S N,HARLOFF H, GUDI O,et al. Reduction in sinapine content in rapeseed (Brassica napus L.) by induced mutations in sinapine biosynthesis genes[J]. Molecular Breeding,2015,35(1):1-11. DOI:10.1007/s11032-015-0236-2.
17 HUSSAIN S,KHAN W M,KHAN M S, et al. Mutagenic effect of sodium azide (NaN3) on M2 generation of Brassica napus L. (variety Dunkled) [J]. Pure Applied Biology,2017,6:226-236.
18 SCHNURBUSH T, M?LLERS C, BECKER H C. A mutant of Brassicanapus with increased palmitic acid content[J]. Plant Breeding,2000,119(2):141–144. DOI:10.1046/j.1439-0523.2000.00481.x.
19 ALI H M A, SHAH S A. Evaluation and selection of rapeseed (Brassica napus L.) mutant lines for yield performance using augmented design[J]. Journal of Animal and Plant Sciences,2013,23:1125-1130.
20 SABLE A D,SABLES A D,SHEGOKAR S P,et al. Effect of sodium azide induction on germination percentage and morphological growth in two varieties of okra[J]. International Journal of Current Microbiology and Applied Sciences,2018,7(6):3586-3593. DOI:10.20546/ijcmas.2018.706.422.
21 杨震,彭选明,彭伟正. 作物诱变育种研究进展[J]. 激光生物学报,2016,25(4):302-308.
21 YANG Z,PENG X M,PENG W Z. Progress of study on crop mutation breeding[J]. Actalaser Biology Sinica,2016,25(4):302-308. DOI:10.3969/j.issn.1007-7146.2016.04.003.
22 彭波. 不同化学诱变剂对水稻的诱变效应及机理研究[D]. 长沙:湖南农业大学,2008.
22 PENG B. Studies on mutation effects and mechanism of different chemical mutagens on the rice [D]. Changsha: Hunan Agricultural University,2008.
23 桂仁意,刘亚迪,郭小勤,等. 137Cs γ辐照和NaN3处理对毛竹种子发芽率和保护酶活性的影响[J]. 核农学报,2009,23(3):400-404,412.
23 GUI R Y,LIU Y D,GUO X Q,et al. Effects of 137 Cs?γ rays irradiation and NaN3 treatment and protective enzyme activity for seeds of Phyllostachysheterocycla cv. pubescens [J]. Journal of Nuclear Agricultural Sciences,2009,23(3):400-404, 412.
24 ASLAM R,BHAT T M,CHOUDHARY S,et al. Estimation of genetic variability, mutagenic effectiveness and efficiency in M2 flower mutant lines of Capsicum annuum L. treated with caffeine and their analysis through RAPD markers [J]. Journal of King Saud University?Science,2017,29:274-283. DOI:10.1016/j.jksus.2016.04.008.
25 SERRAT X,ESTEBAN R,GUIBOURT N,et al. EMS mutagenesis in mature seed?derived rice calli as a new method for rapidly obtaining TILLING mutant populations [J]. Plant Methods,2014,10(1):1-14. DOI:10.1186/1746-4811-10-5.
26 TALEBI A B, TALEBI A B, SHAHROKHIFAR B. Ethyl methane sulphonate (EMS) induced mutagenesis in Malaysian rice (cv. MR219) for lethal dose determination[J]. American Journal of Plant Sciences,2012,3:1661-1665. DOI:10.4236/ajps.2012.312202.
27 刘建霞,苏迁,周利青,等. NaN3诱变对赤小豆种子萌发与幼苗抗氧化系统的影响[J]. 种子,2018,37(7):35-38.
27 LIU J X,SU Q,ZHOU L Q,et al. NaN3 mutagenesis on effects of antioxidant systems of seed germination and seedling of red bean[J]. Seed,2018,37(7):35-38. DOI:10.16590/j.cnki.1001-4705.2018.07.035.
28 GANDHI E S, DEVI A S ,MULLAINATHAN L. The effect of ethyl methane sulphonate and diethyl sulphate on chilli (Capsicum annuum L.) in M1 generation[J]. Internationa Letters of Natural Sciences,2014,10:18-23. DOI:10.18052/www.scipress.com/ilns.10.18.
29 LEE D K, KIM Y S, KIM J K. Determination of the optimal condition for ethylmethane sulfonate?mediated mutagenesis in a Korean commercial rice, Japonica cv. Dongjin[J]. Applied Biological Chemistry,2017,60(3):241-247. DOI:10.1007/s13765-017-0273-0.
30 ASLAM M,SAEED M S,SATTAR S,et al. Result of chemical mutagenesis on quantitative as well as qualitative traits of maize (Zea mays L.) [J]. International Journal of Pure & Applied Bioscience,2018,6 (1):12-15. DOI:10.18782/2320-7051.6087.
31 王萍,王罡,倪文燕,等. 叠氮化钠对油葵M1生物学效应的研究[J]. 中国油料,1996,18(4):17-19.
31 WANG P,WANG G,NI W Y,et al. Study on the biological effects of NaN3 in sunflower[J]. Chinese Journal of Oil Crop Sciences,1996,18(4):17-19.
32 FRITSCHIF B,RAY J D. Soybean leaf nitrogen,chlorophyll content,and chlorophyll a/b ratio[J]. Photosynthetica, 2007,45(1):92-98. DOI:10.1007/s11099-007-0014-4.
33 王亚楠,董丽娜,丁彦芬,等. 遮阴对4种紫堇属植物光合特性和叶绿素荧光参数的影响[J]. 应用生态学报,2020,31(3):769-777.
33 WANG Y N,DONG L N,DING Y F,et al. Effects of shading on photosynthetic characteristics and chlorophyll fluorescence parameters of four species of Corydalis[J]. Chinese Journal of Applied Ecology,2020,31(3):769-777. DOI: 10.13287/j.1001-9332.202003.004.
34 戴思兰,洪艳. 基于花青素苷合成和呈色机理的观赏植物花色改良分子育种[J].中国农业科学,2016,49(3):529-542.
34 DAI S L,HONG Y.Molecular breeding for flower colors modification on ornamental plants based on the mechanism of anthocyanins biosynthesis and coloration[J].Scientia Agricultura Sinica,2016,49(3):529-542.DOI:10.3864/j.issn.0578-1752.2016.03.011.
35 RICARDO M, AKIHIKO A. Effect of gamma?radiation and sodium azide on quantitative characters in rice (Oryza sativa L.) [J]. Genetics And Molecular Biology,1998,21(1):81-85. DOI:10.1590/s1415-47571998000100014.
36 ARISHA M H,LIANG B K,SHAH S,et al. Kill curve analysis and response of first generation Capsicum annuum L. B12 cultivar to ethyl methane sulfonate[J]. Genetics and Molecular Research. 2014,13(4):10049-10061.DOI:10.4238/2014.november.28.9.
37 范芳绮.九重葛之组织培养化学诱变[D].台中:中兴大学, 2012.
37 FAN F Q. The chemical mutation and tissue culture of Bougainvillea[D]. Taizhong:National Chung Hsing University,2012.
38 蔡美萍. 夏鹃品种的园林应用综合评价及其适宜诱变条件的初步筛选[D]. 福州:福建农林大学,2017.
38 CAI M P. Comprehensive evaluation on landscape application of azaleas varieties and preliminary selection on its suitable mutation conditions[D].Fuzhou: Fujian Agriculture & Forestry University,2017.
PDF(1175 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/