JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2012, Vol. 36 ›› Issue (01): 129-136.doi: 10.3969/j.jssn.1000-2006.2012.01.027
Previous Articles Next Articles
CHEN Ying, TAN Biyue, HUANG Minren*
Online:
2012-01-30
Published:
2012-01-30
CLC Number:
CHEN Ying, TAN Biyue, HUANG Minren*. Recent advances in plant immune system[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2012, 36(01): 129-136.
[1]Dangl J L, Jones J D G. Plant pathogens and integrated defence responses to infection[J]. Nature,2001, 411:826-833. [2]Ausubel F M. Are innate immune signaling pathways in plants and animals conserved? [J] Nature Immunol, 2005, 6: 973-979. [3]Chisholm S T, Coaker G, Day B, et al. Host microbe interactions: shaping the evolution of the plant immune response[J]. Cell, 2006, 124: 803-814. [4]Jones J D G, Dangl J L. The plant immune system[J]. Nature, 2006, 444: 323-329. [5]Wu Y, Wood M D, Tao Y, et al. Direct delivery of bacterial avirulence proteins into resistant Arabidopsis protoplasts leads to hypersensitive cell death[J]. The Plant Journal, 2003, 33(1): 131-137. [6]Boller T, Felix G. A renaissance of elicitors: perception of microbeassociated molecular patterns and danger signals by patternrecognition receptors[J]. Annual Review of Plant Biology, 2009, 60(1): 379-406. [7]deYoung B J, Innes R W. Plant NBSLRR proteins in pathogen sensing and host defense[J]. Nature Immunol, 2006, 7:1243-1249. [8]Thorsten N,Frédéric B,Birgit K, et al. Innate immunity in plants and animals: striking similarities and obvious differences[J]. Immunological Reviews,2004,198:249-266. [9]Felix G, Duran J D, Volko S, et al. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin[J]. The Plant Journal, 1999, 18(3): 265-276. [10]Naito K, Taguchi F, Suzuki T, et al. Amino acid sequence of bacterial microbeassociated molecular pattern flg22 is required for virulence[J]. Molecular PlantMicrobe Interactions, 2008, 21(9): 1165-1174. [11]Nicaise V, Roux M, Zipfel C. Recent advances in PAMPtriggered immunity against bacteria: pattern recognition receptors watch over and raise the alarm[J]. Plant Physiology, 2009, 150(4): 1638-1647. [12]Kunze G, Zipfel C, Robatzek S, et al. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants[J]. The Plant Cell, 2004, 16(12): 3496-3507. [13]Zipfel C, Robatzek S, Navarro L, et al. Bacterial disease resistance in Arabidopsis through flagellin perception[J]. Nature, 2004, 428(6984): 764-767. [14]Bedini E, De Castro C, Erbs G, et al. Structuredependent modulation of a pathogen response in plants by synthetic Oantigen polysaccharides[J]. Journal of the American Chemical Society, 2005, 127(8): 2414-2416. [15]Aslam S N, Newman M A, Erbs G, et al. Bacterial polysaccharides suppress induced innate immunity by calcium chelation[J]. Current Biology, 2008, 18(14): 1078-1083. [16]Iizasa E, Mitsutomi M, Nagano Y. Direct binding of a plant LysM receptorlike kinase, LysM RLK1/CERK1, to chitin in vitro[J]. Journal of Biological Chemistry, 2010, 285(5): 2996-3004. [17]GmezGmez L, Boller T. FLS2: An LRR receptorlike kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis[J]. Molecular Cell, 2000, 5(6): 1003-1011. [18]Robatzek S, Chinchilla D, Boller T. Ligandinduced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis[J]. Genes and Development, 2006, 20(5): 537-542. [19]Sun W, Dunning F M, Pfund C, et al. Withinspecies flagellin polymorphism in Xanthomonas campestris pv campestris and its impact on elicitation of Arabidopsis FLAGELLIN SENSING2dependent defenses[J]. The Plant Cell, 2006, 18(3): 764-779. [20]Robatzek S, Bittel P, Chinchilla D, et al. Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities[J]. Plant Molecular Biology, 2007, 64(5): 539-547. [21]Takai R, Isogai A, Takayama S, et al. Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice[J]. Molecular PlantMicrobe Interactions, 2008, 21(12): 1635-1642. [22]Zipfel C, Kunze G, Chinchilla D, et al. Perception of the Bacterial PAMP EFTu by the receptor EFR restricts Agrobacteriummediated transformation[J]. Cell, 2006, 125(4): 749-760. [23]Boller T, He S Y. Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens[J]. Science, 2009, 324(5928): 742-744. [24]Lee S W, Han S W, Sririyanum M, et al. A typeI secreted, sulfated peptide triggers XA21mediated innate immunity[J]. Science, 2009, 36: 850-853. [25]Asai T, Tena G, Plotnikova J, et al. MAP kinase signalling cascade in Arabidopsis innate immunity[J]. Nature, 2002, 415: 977-983. [26]Gao M, Liu J, Bi D, et al. MEKK1, MKK1/MKK2 and MPK4 function together in a mitogenactivated protein kinase cascade to regulate innate immunity in plants[J]. Cell Research, 2008, 18(12): 1190-1198. [27]Pandey S P, Somssich I E. The role of WRKY transcription factors in plant immunity[J]. Plant Physiology, 2009, 150(4): 1648-1655. [28]Zheng Z, Mosher S L, Fan B, et al. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae[J]. BMC Plant Biology, 2007, 7: 2. [29]Zheng Z, Qamar S A, Chen Z, et al. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens[J]. The Plant Journal, 2006, 48(4): 592-605. [30]Qiu J L, Zhou L, Yun B W, et al. Arabidopsis mitogenactivated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1[J]. Plant Physiology, 2008b, 148(1): 212-222. [31]He P, Shan L, Lin N, et al. Specific bacterial suppressors of MAMP signaling upstream of MAPKKK in Arabidopsis innate immunity[J]. Cell, 2006, 125(3): 563-575. [32]Keshavarzi M, Soylu S, Brown I, et al. Basal defenses induced in pepper by lipopolysaccharides are suppressed by Xanthomonas campestris pv. Vesicatoria[J]. Molecular PlantMicrobe Interactions, 2004, 17(7): 805-815. [33]Mudgett M B. New insights to the function of phytopathogenic bacterial type III effectors in plants[J]. Annual Review Plant Biology, 2005, 56: 509-531. [34]Lauge R, De Wit P J. Fungal avirulence genes: structure and possible functions[J]. Fungal Genetics and Biology, 1998, 24(3): 285-297. [35]Kim H S, Desveaux D, Singer A U, et al. The Pseudomonas syringae effector AvrRpt2 cleaves its Cterminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation[J]. Proceeding of the National Academy of Sciences of the United States of America, 2005, 102(18): 6496-6501. [36]Gohre V, Spallek T, Haweker H, et al. Plant patternrecognition receptor FLS2 is directed for degradation by the bacterial ubiquitin ligase AvrPtoB[J]. Current Biology, 2008, 18: 1824-1832. [37]Shao F, Golstein C, Ade J, et al. Cleavage of Arabidopsis PBS1 by a bacterial type III effector[J]. Science, 2003, 301:101-112. [38]Xiang T, Zong N, Zou Y, et al. Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases[J]. Current Biology, 2008, 18: 74-80. [39]Zhang J, Li W, Xiang T, et al. Receptorlike cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector[J]. Cell Host Microbe, 2010, 7: 290-301. [40]Zhang J, Shao F, Li Y, et al. A Pseudomonas syringae effector inactivates MAPKs to suppress PAMPinduced immunity in plants[J]. Cell Host & Microbe, 2007, 1(3): 175-185. [41]Jelenska J, Yao N, Vinatzer B A, et al. Virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses[J]. Current Biology, 2007, 17: 499-508. [42]Cui H, Wang Y, Xue L, et al. Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP kinase 4[J]. Cel |
[1] | FAN Mingyang, HU Meng, YNAG Yuan, FANG Yanming. Community classification, structures and species diversity characteristics of Pinus massoniana and P. hwangshanensis in the eastern China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 47-58. |
[2] | LUO Chuying, SHE Jiyun, TANG Zichao. Prediction of potential distribution areas of the endangered Cathaya argyrophylla based on shared socio-economic pathways (SSPs) climate scenarios [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 161-168. |
[3] | LI Yuhan, DING Yanfen, ZHANG Changwei. Niche and interspecific association of dominant herbaceous plants in the outer Qinhuai River,Nanjing City [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 203-210. |
[4] | ZHAO Ting, BAI Hongying, DENG Chenhui, TA Zhijie. A quantitative divided method for the vegetation vertical belt based on NDVI and DEM: a case study of Taibai Mountain on the south slope [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 165-171. |
[5] | WEI Yajuan, GUO Jing, DANG Xiaohong, Xie Yunhu, WANG Ji, LI Xiaole, WU Huimin. Morphological characteristics and influencing mechanisms of Nitraria tangutorum nebkhas at different sandy land types in desert oasis ecotone of Jilantai [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 172-180. |
[6] | YUAN Jingqi, YU Zhongliang, LAN Xuehan, LI Chenghong, TIAN Nianjun, DU Fengguo. Effects of shading treatments on photosynthetic characteristics of endangered plant Thuja koraiensis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 58-66. |
[7] | GONG Maojia, WANG Juan, FU Xiaoyong, KOU Weili, LU Ning, WANG Qiuhua, LAI Hongyan. Suitable regions forecasting and environmental influencing factors of Malania oleifera in Yunnan and Guangxi [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 44-52. |
[8] | CHEN Lin, PAN Tingting, LYU Xiaodong, WANG Zhangpei, CHENG Lin. New records of seed plants from Jiangxi Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 232-234. |
[9] | MIAO Jing, WANG Yong, WANG Lu, XU Xiaogang. Prediction of potential geographical distribution pattern change for Castanopsis sclerophylla on MaxEnt [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 193-198. |
[10] | PAN Tingting, CHEN Lin, YANG Guodong, YI Xiangui, WANG Xianrong. Species diversity of communities and environmental interpretation of the suburban forest in Northern Nanjing [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 48-54. |
[11] | WANG Yingying, MA Yuying, ZHANG Yong, HUANG Zheng. Biodiversity and the risk of infectious diseases [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 9-11. |
[12] | HUANG Yaru, XIN Zhiming, LI Yonghua, MA Yingbin, DONG Xue, LUO Fengmin, LI Xinle, DUAN Ruibin. Seasonal variation of the stem sap flow of artificial Haloxylon ammodendron (C.A.Mey.) Bunge and its relationship with meteorological factors in Ulan Buh Desert [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 131-139. |
[13] | DUAN Na, WANG Ji, HAO Yuguang, GAO Junliang, CHEN Xiaona, DUO Puzeng. Effects of gas exchange and morphological characteristics of desert species Nitraria tangutorum under moisture variation [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 32-38. |
[14] | CHEN Yuheng, LÜ Yiwei, YIN Xiaojie. Predicting habitat suitability of 12 coniferous forest tree species in southwest China based on climate change [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 113-120. |
[15] | ZHANG Jiqiang,CHEN Wenye,TAN Yanrong,LIU Donghao, YUAN Haifeng, WANG Binjie,LIU Hongyuan,CHEN Xu. Niche characteristics of a salinized Phragmites communis meadow in a wetland of West Lake, Dunhuang, Gansu Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(02): 191-196. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||