JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2012, Vol. 36 ›› Issue (06): 130-134.doi: 10.3969/j.jssn.1000-2006.2012.06.026
Previous Articles Next Articles
CHENG Qiang, XU Meng, HUANG Minren*
Online:
2012-11-30
Published:
2012-11-30
CLC Number:
CHENG Qiang, XU Meng, HUANG Minren*. The application of sitespecific DNA endonucleases in plant gene targeting[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2012, 36(06): 130-134.
[1]Sherry A Kempin, Sarah J Liljegren, Laura M Block, et al. Targeted disruption in Arabidopsis[J]. Nature,1997,389: 802-803. [2]Jerzy Paszkowski, Markus Baur, Augustyn Bogucki, et al. Gene targeting in plants[J]. The EMBO Journal, 1988, 7(13): 4021-4026. [3]Alonso M, Anna N Stepanova, Thomas J Leisse, et al. Genomewide insertional mutagenesis of Arabidopsis thaliana[J]. Science, 2003, 301: 653-657. [4]Matthew H Porteus. Plant biotechnology: zinc fingers on target[J]. Nature, 2009, 459: 337-338. [5]Tzvi Tzfira1, Dan Weinthal, Ira Marton, et al. Genome modifications in plant cells by custommade restriction enzymes[J]. Plant Biotechnology Journal, 2012, 10(4): 373-389. [5]Fengli Fu, Jeffry D Sander, Morgan Maeder, et al. Zinc finger database (ZiFDB): a repository for information on C2H2 zinc fingers and engineered zincfinger arrays[J]. Nucleic Acids Research, 2009,37(1): 279-283. [7]David A Wright, Stacey ThibodeauBeganny, Jeffry D Sander, et al. Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly[J]. Nature Protocols, 2006, 1(3): 1637-1652. [8]Ankit Gupta, Ryan G Christensen, Amy L Rayla, et al. An optimized twofinger archive for ZFNmediated gene targeting[J]. Nature Methods, 2012, 9: 588-590. [9]Morgan L Maeder, Stacey ThibodeauBeganny, Jeffry D Sander, et al. Oligomerized pool engineering (OPEN): an ‘opensource’ protocol for making customized zincfinger arrays[J]. Nature Protocols, 2009, 4(10): 1471-1501. [10]Fyodor D Urnov, Edward J Rebar, Michael C Holmes, et al. Genome editing with engineered zinc finger nucleases[J]. Nature Reviews Genetics, 2010, 11(9): 636-646. [11]Alan Lloyd, Christopher L Plaisier, Dana Carroll, et al. Targeted mutagenesis using zincfinger nucleases in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(6): 2232-2237. [12]David A Wright, Jeffrey A Townsend, Ronnie Joe Winfrey Jr, et al. Highfrequency homologous recombination in plants mediated by zincfinger nucleases[J]. The Plant journal, 2005, 44(4): 693-705. [13]Vipula K Shukla, Yannick Doyon, Jeffrey C Miller, et al. Precise genome modification in the crop species Zea mays using zincfinger nucleases[J]. Nature, 2009, 459: 437-441. [14]Jeffrey A Townsend, David A Wright, Ronnie J Winfrey, et al. Highfrequency modification of plant genes using engineered zincfinger nucleases[J]. Nature, 2009,459: 442-445. [15]Vikram Pattanayak, Cherie L Ramirez, J Keith Joung, et al. Revealing offtarget cleavage specificities of zincfinger nucleases by in vitro selection[J]. Nature Methods, 2011, 8(9): 765-770. [16]Feng Zhang, Morgan L Maeder, Erica UngerWallace, et al. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26): 12028-12033. [17]Keishi Osakabe, Yuriko Osakabe, Seiichi Toki. Sitedirected mutagenesis in Arabidopsis using customdesigned zinc finger nucleases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26): 12034-12039. [18]Shaun J Curtin, Feng Zhang, Jeffry D Sander, et al. Targeted mutagenesis of duplicated genes in soybean with zincfinger nucleases[J]. Plant Physiology, 2011,156(2): 466-473. [19]Jens Boch, Ulla Bonas. Xanthomonas AvrBs3 familytype III effectors: discovery and function[J]. Annual Review of Phytopathology, 2010, 48: 419-436. [20]Jens Boch, Heidi Scholze, Sebastian Schornack, et al. Breaking the code of DNA binding specificity of TALtype III effectors[J]. Science, 2009, 326(5959): 1509-1512. [21]Adam J Bogdanove, Daniel F Voytas. TAL effectors: customizable proteins for DNA targeting[J]. Science, 2011, 333(6051): 1843-1846. [22]Heidi Scholze, Jens Boch. TAL effectors are remote controls for gene activation[J]. Current Oopinion in Microbiology, 2011, 14(1): 47-53. [23]Neville E Sanjana, Le Cong, Yang Zhou, et al. A transcription activatorlike effector toolbox for genome engineering[J]. Nature Protocols, 2012, 7(1): 171-192. [24]Andrew J Wood, TeWen Lo, Bryan Zeitler, et al. Targeted genome editing across species using ZFNs and TALENs[J]. Science, 2011, 333(6040): 307. [25]Jeffrey C Miller, Siyuan Tan, Guijuan Qiao, et al. A TALE nuclease architecture for efficient genome editing[J]. Nature Biotechnology, 2011, 29(2): 143-148. [26]Ting Li, Sheng Huang, Xuefeng Zhao, et al. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes[J]. Nucleic Acids Research, 2011, 39(14): 6315-6325. [27]Peng Huang, An Xiao, Mingguo Zhou, et al. Heritable gene targeting in zebrafish using customized TALENs[J]. Nature Biotechnology, 2011,29(8): 699-700. [28]Mahfouz M M, Li L X , Shamimuzzaman M, et al. De novoengineered transcription activatorlike effector (TALE) hybrid nuclease with novel DNA binding specificity creates doublestrand breaks[J]. Proceedings of the National Academy of Sciences of the United States of America,2011, 108(6): 2623-2628. [29]Tomas Cermak, Erin L Doyle, Michelle Christian, et al. Efficient design and assembly of custom TALEN and other TAL effectorbased constructs for DNA targeting[J]. Nucleic Acids Research, 2011, 39(12): 1-11. [30]Ting Li, Bo Liu, Martin H Spalding, et al. Highefficiency TALENbased gene editing produces diseaseresistant rice[J]. Nature Biotechnology, 2012, 30(5): 390-392. [31]Magdy M Mahfouz, Lixin Li, Marek Piatek, et al. Targeted transcriptional repression using a chimeric TALESRDX repressor protein[J]. Plant Molecular Biology, 2012, 78(3): 311-321. |
[1] | YIN Huakang, ZHANG Jindong, HUANG Jinyan, PU Guanhua, MAO Ze’en, ZHOU Caiquan, HUANG Yaohua, FU Liqiang. Spatial distribution of bamboo, the staple food of giant panda (Ailuropoda melanoleuca) in Mabian Dafengding Nature Reserve, Sichuan Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 187-193. |
[2] | FAN Mingyang, HU Meng, YNAG Yuan, FANG Yanming. Community classification, structures and species diversity characteristics of Pinus massoniana and P. hwangshanensis in the eastern China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 47-58. |
[3] | LUO Chuying, SHE Jiyun, TANG Zichao. Prediction of potential distribution areas of the endangered Cathaya argyrophylla based on shared socio-economic pathways (SSPs) climate scenarios [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 161-168. |
[4] | LI Yuhan, DING Yanfen, ZHANG Changwei. Niche and interspecific association of dominant herbaceous plants in the outer Qinhuai River,Nanjing City [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 203-210. |
[5] | ZHAO Ting, BAI Hongying, DENG Chenhui, TA Zhijie. A quantitative divided method for the vegetation vertical belt based on NDVI and DEM: a case study of Taibai Mountain on the south slope [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 165-171. |
[6] | WEI Yajuan, GUO Jing, DANG Xiaohong, Xie Yunhu, WANG Ji, LI Xiaole, WU Huimin. Morphological characteristics and influencing mechanisms of Nitraria tangutorum nebkhas at different sandy land types in desert oasis ecotone of Jilantai [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 172-180. |
[7] | YUAN Jingqi, YU Zhongliang, LAN Xuehan, LI Chenghong, TIAN Nianjun, DU Fengguo. Effects of shading treatments on photosynthetic characteristics of endangered plant Thuja koraiensis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 58-66. |
[8] | GONG Maojia, WANG Juan, FU Xiaoyong, KOU Weili, LU Ning, WANG Qiuhua, LAI Hongyan. Suitable regions forecasting and environmental influencing factors of Malania oleifera in Yunnan and Guangxi [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 44-52. |
[9] | CHEN Lin, PAN Tingting, LYU Xiaodong, WANG Zhangpei, CHENG Lin. New records of seed plants from Jiangxi Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 232-234. |
[10] | MIAO Jing, WANG Yong, WANG Lu, XU Xiaogang. Prediction of potential geographical distribution pattern change for Castanopsis sclerophylla on MaxEnt [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 193-198. |
[11] | PAN Tingting, CHEN Lin, YANG Guodong, YI Xiangui, WANG Xianrong. Species diversity of communities and environmental interpretation of the suburban forest in Northern Nanjing [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 48-54. |
[12] | WANG Yingying, MA Yuying, ZHANG Yong, HUANG Zheng. Biodiversity and the risk of infectious diseases [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 9-11. |
[13] | HUANG Yaru, XIN Zhiming, LI Yonghua, MA Yingbin, DONG Xue, LUO Fengmin, LI Xinle, DUAN Ruibin. Seasonal variation of the stem sap flow of artificial Haloxylon ammodendron (C.A.Mey.) Bunge and its relationship with meteorological factors in Ulan Buh Desert [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 131-139. |
[14] | DUAN Na, WANG Ji, HAO Yuguang, GAO Junliang, CHEN Xiaona, DUO Puzeng. Effects of gas exchange and morphological characteristics of desert species Nitraria tangutorum under moisture variation [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 32-38. |
[15] | CHEN Yuheng, LÜ Yiwei, YIN Xiaojie. Predicting habitat suitability of 12 coniferous forest tree species in southwest China based on climate change [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 113-120. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||