JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2020, Vol. 44 ›› Issue (2): 75-83.doi: 10.3969/j.issn.1000-2006.201907017
Previous Articles Next Articles
YI Min1(), ZHANG Lu1, LEI Lei1, CHENG Zishan1, SUN Shiwu2, LAI Meng1,*()
Received:
2019-07-12
Revised:
2019-09-18
Online:
2020-03-30
Published:
2020-04-01
Contact:
LAI Meng
E-mail:yimin6104@163.com;laimeng21@163.com
CLC Number:
YI Min, ZHANG Lu, LEI Lei, CHENG Zishan, SUN Shiwu, LAI Meng. Analysis of SSR information in transcriptome and development of EST-SSR molecular markers in Pinus elliottii Engelm.[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(2): 75-83.
Table 1
Basic information of test materials"
来源 source | 家系数 number of family |
---|---|
佐治亚州种子园自由授粉家系 open-pollinated families of seed orchard in Georgia State | 12 |
密西西比州种子园自由授粉家系 open-pollinated families of seed orchard in Mississippi State | 48 |
佛罗里达州种子园自由授粉家系 open-pollinated families of seed orchard in Florida State | 48 |
吉安市林科所母树林优良单株混合种子 mixed seeds from plus-trees in the parent-stand of Ji’an Forestry Institute | 5 |
Table 2
SSR search results in transcriptome ofP. elliottii Engelm. "
项目 item | 数值 value |
---|---|
搜索序列总数 number of searching sequences | 79 574 |
搜索序列总长度/bp length of searching sequences | 69 735 997 |
SSR总数 number of SSR | 3 818 |
含SSR位点的序列数 number of sequences with SSRs | 3 373 |
含1个以上SSR位点的序列数 number of sequences with more than one SSRs | 393 |
SSR发生频率/% occurrence frequency of SSR | 4.24 |
unigene出现频率/% occurrence frequency of unigene | 4.80 |
平均距离/kb average distance | 18.27 |
Table 3
Distribution of the SSR motifs in P. elliottii Engelm. transcriptome "
重复类型 type of repeat | 重复单元类型数 number of type | SSR数目 number of SSR | 比例/% proportion | 频率/% frequency | 平均距离/kb average distance | 平均长度/bp average length |
---|---|---|---|---|---|---|
单核苷酸mononucleotide | 4 | 2 426 | 63.54 | 3.05 | 28.75 | 11.51 |
二核苷酸dinucleotide | 11 | 731 | 19.15 | 0.92 | 95.40 | 14.39 |
三核苷酸trinucleotide | 55 | 621 | 16.27 | 0.78 | 112.30 | 15.95 |
四核苷酸tetranucleotide | 20 | 20 | 0.52 | 0.03 | 3 486.80 | 22.20 |
五核苷酸pentanucleotide | 5 | 5 | 0.13 | 0.01 | 13 947.20 | 25.00 |
六核苷酸hexanucleotide | 13 | 13 | 0.31 | 0.02 | 5 811.33 | 33.23 |
总计 total | 108 | 3 818 | 100 | 4.80 | 18.27 | 20.38 |
Fig.1
Frequency distribution of di- and tri-SSRs by motif (A) and frequency of SSR repeat types for the various number of repeats (B) in P. elliottii Engelm. Transcriptome MNRs、DNRs、TNRs、TTNRs、PTNRs、HXNRs分别为单、二、三、四、五、六核苷酸。MNRs, DNRs, TNRs, TTNRs, PTNRs, HXNRs are mono-, di-, tri, tetra-, penta-, hexd-nucleotides, respectively."
Table 4
Distribution of SSR motif length"
重复类型 type of repeat | 单元长度/bp motif length | 数量 number | 比例/% proportion | 重复类型 type of repeat | 单元长度/bp motif length | 数量 number | 比例/% proportion |
---|---|---|---|---|---|---|---|
单核苷酸 mononucleotide | 10 | 1 093 | 45.05 | 二核苷酸 dinucleotide | 20 | 28 | 3.83 |
11 | 505 | 20.82 | 22 | 8 | 1.09 | ||
12 | 251 | 10.35 | 24 | 1 | 0.14 | ||
13 | 171 | 7.05 | 三核苷酸 trinucleotide | 15 | 470 | 75.68 | |
14 | 136 | 5.61 | 18 | 110 | 17.71 | ||
15 | 114 | 4.70 | 21 | 37 | 5.96 | ||
16 | 94 | 3.87 | 24 | 4 | 0.64 | ||
17 | 43 | 1.77 | 四核苷酸 tetranucleotide | 20 | 16 | 80.00 | |
18 | 14 | 0.58 | 24 | 2 | 10.00 | ||
19 | 1 | 0.04 | 32 | 1 | 5.00 | ||
20 | 3 | 0.12 | 44 | 1 | 5.00 | ||
22 | 1 | 0.04 | 五核苷酸pentanucleotide | 25 | 5 | 100.00 | |
二核苷酸 dinucleotide | 12 | 301 | 41.18 | 六核苷酸 hexanucleotide | 30 | 8 | 61.54 |
14 | 161 | 22.02 | 36 | 4 | 30.77 | ||
16 | 149 | 20.38 | 38 | 1 | 7.69 | ||
18 | 85 | 11.63 |
Table 5
Distribution of different size motifs for EST-SSR of P. elliottii Engelm. "
重复类型 type of repeat | 3'UTR | 5'UTR | CDS | 未知 unknow |
---|---|---|---|---|
单核苷酸 mononucleotide | 946 | 793 | 103 | 584 |
二核苷酸 dinucleotide | 274 | 230 | 33 | 196 |
三核苷酸 trinucleotide | 114 | 142 | 216 | 149 |
四核苷酸 tetranucleotide | 8 | 6 | 0 | 6 |
五核苷酸 pentanucleotide | 2 | 2 | 0 | 1 |
六核苷酸 hexanucleotide | 2 | 3 | 5 | 3 |
总计total | 1 346 | 1 176 | 357 | 939 |
Table 6
The information of polymorphism primer"
引物编号 primer No. | 引物命名 name | 重复基序 repeat motifs | 扩增片段大小 amplification fragment size | 正向引物序列 forward primer sequence (5'-3') | 反向引物序列 reverse primer sequence (5'-3') | 多态性条带数 polymorphic band number | 多态信息含量(PIC) polymorphism information content |
---|---|---|---|---|---|---|---|
1 | Pe103802 | (AT)7 | 141 | GGATGATCAGGGCATGAAAT | CATAAAAGTTGGCACCACCA | 9 | 0.679 |
4 | Pe111209 | (AC)6 | 256 | AGCTATGTGGACTATGGCGG | CTGTGAAGTGTGAAGCCCAG | 3 | 0.382 |
8 | Pe114582 | (TA)6 | 275 | ATACCTAGGCAGATGCCCCT | TTAGGCTGGACAACCCAAAC | 2 | 0.384 |
16 | Pe117651 | (GA)6 | 262 | GTTAGCCTCCCTCACCGATT | CACAAACCTTGGTGTTGCAC | 2 | 0.118 |
19 | Pe119033 | (AT)6 | 267 | TTCTTGATACATCGGGGCAT | AAACCTGTTCAAATCCTCACAA | 3 | 0.168 |
28 | Pe102606 | (AAT)5 | 162 | TTGTTTCACTGCACTCCAGC | GGCATTTTAATGCGGTTGTT | 2 | 0.203 |
30 | Pe103288 | (ATT)5 | 274 | GAGGGAAGCTTATCCCGAAC | TCCTTTCATGAGGAGGCACT | 6 | 0.726 |
32 | Pe106732 | (AGG)5 | 163 | CGGTGGAAGATTTAGGTCCA | GAAAAACAGCGGCAGAAAAG | 4 | 0.103 |
38 | Pe109562 | (CCT)5 | 209 | CAGGAGCCGAAGTCTGAGTC | TTCTGGCCCTCCTCTCTACA | 2 | 0.320 |
57 | Pe139538 | (TTAG)5 | 280 | TGAAAGGTGGAGATCCTTGG | AGGTCTGAGAGCATGGAGGA | 4 | 0.400 |
58 | Pe140688 | (GATG)5 | 264 | ATGAACGCTTTAGTTCCCCC | GTGATGCGAGATGTGCAGTT | 2 | 0.112 |
60 | Pe146453 | (CATT)5 | 257 | CTGATCCACCCTCATCTGCT | GGGAGCAACCAGAACAACAT | 3 | 0.468 |
61 | Pe110222 | (TTG)5 | 277 | TCTGTAACTTGGACTGGCCC | CAGCCACAGTAGGTGCAACA | 2 | 0.176 |
62 | Pe111574 | (CAC)6 | 170 | ACGGTGTTCCACAGATGGAT | AGAAGATGCAGGAGCCTGAG | 2 | 0.203 |
63 | Pe111823 | (CAT)6 | 181 | ATCCGCTCTAGTTCTGCCAA | CAAGTGCGGGCAATCTTTAT | 2 | 0.238 |
66 | Pe137956 | (AAAC)5 | 240 | TGGGGTTAGGCTCTCTGCTA | GAATATCCGAATTGCGAGGA | 2 | 0.118 |
70 | Pe106199 | (TA)6 | 257 | CCATAGGCCACAGTGAGGTT | TTCTTGGACATTGACCCTCC | 2 | 0.169 |
79 | Pe110432 | (CT)7 | 196 | TGGACCTTCCAAACCAAAAG | GACGAGAAGGAGCCGTGTAG | 2 | 0.189 |
80 | Pe112948 | (AC)6 | 263 | ACGTTGATCTTTGTGTGCCA | TGAACATCCTCCCTCATTCC | 2 | 0.201 |
81 | Pe113019 | (AG)7 | 240 | ATCTAGCGATCCCGGAAGTT | ACCACCTTCTTCCTCCCATT | 3 | 0.590 |
92 | Pe113428 | (CT)6 | 271 | ATGCATGGGTTTAGCCTGTC | CCCTGTTTGACTCCTTCCAG | 4 | 0.391 |
94 | Pe114582 | (TA)6 | 275 | ATACCTAGGCAGATGCCCCT | TTAGGCTGGACAACCCAAAC | 5 | 0.652 |
99 | Pe115123 | (AG)9 | 275 | AAAACCCCAGCTAGGGAAGA | TCTATTGGCTCTTCGCATGT | 6 | 0.672 |
116 | Pe115359 | (AT)6 | 197 | AGGGCCAAAACACATCAAAG | ACAACCCTTGGAATGACTGC | 7 | 0.709 |
[1] | 庄伟瑛, 张玉英, 邹元熹. 高产脂湿地松选择和相关因子的分析[J]. 江西农业大学学报, 2007,29(1):55-60,65. |
ZHUANG W Y, ZHANG Y Y, ZOU Y X. Selection for high-resin yield of slash pine and analysis of factors concerned[J]. Acta Agriculturae Universitatis Jiangxiensis, 2007,29(1):55-60,65.DOI: 10.3969/j.issn.1000-2286.2007.01.012. | |
[2] | 赵奋成, 郭文冰, 钟岁英, 等. 基于针刺仪测定技术的湿地松木材密度间接选择效果[J]. 林业科学, 2018,54(10):172-179. |
ZHAO F C, GUO W B, ZHONG S Y, et al. Effects of indirect selection on wood density based on resistograph measurement of slash pine[J]. Scientia Silvae Sinicae, 2018,54(10):172-179.DOI: 10.11707/j.1001-7488.20181020. | |
[3] | 张彩云, 朱丽华, 谈家金, 等. 抗松针褐斑病湿地松体细胞胚胎发生与植株再生[J]. 东北林业大学学报, 2016,44(6):17-22. |
ZHANG C Y, ZHU L H, TAN J J, et al. Somatic embryogenesis and plantlet regeneration of disease-resistant slash pine ( Pinus elliottii Engelm.) to brown spot needle blight [J]. Journal of Northeast Forestry University, 2016,44(6):17-22.DOI: 10.3969/j.issn.1000-5382.2016.06.006. | |
[4] |
LAI M, DONG L M, YI M, et al. Genetic variation,heritability and genotype × environment interactions of resin yield,growth traits and morphologic traits for Pinus elliottii at three progeny trials[J]. Forests, 2017, 8(11):409.DOI: 10.3390/f8110409.
doi: 10.3390/f8110409 |
[5] | 吴东山, 黄永利, 杨章旗. 基于不同表型特征湿地松松脂成分的分析与评价[J]. 广西林业科学, 2018,47(3):268-273. |
WU D S, HUANG Y L, YANG Z Q. Analysis and evaluation of Pinus elliottii resin composition with different phenotypic characteristics [J]. Guangxi Forestry Science, 2018,47(3):268-273.DOI: 10.3969/j.issn.1006-1126.2018.03.004. | |
[6] | 张帅楠, 栾启福, 姜景民. 基于无损检测技术的湿地松生长及材性性状遗传变异分析[J]. 林业科学, 2017,53(6):30-36. |
ZHANG S N, LUAN Q F, JIANG J M. Genetic variation analysis for growth and wood properties of slash pine based on the non-destructive testing technologies[J]. Scientia Silvae Sinicae, 2017,53(6):30-36.DOI: 10.11707/j.1001-7488.20170604. | |
[7] | 王润辉, 赵奋成. 湿地松、加勒比松及其杂交种DNA的提取与微卫星PCR反应体系的优化[J]. 广东林业科技, 2006,22(1):1-4. |
WANG R H, ZHAO F C. DNA extraction and SSR-PCR optimization of PEE,PCH and PEE×PCH[J]. Guangdong Forestry Science and Technology, 2006,22(1):1-4.DOI: 10.3969/j.issn.1006-4427.2006.01.001. | |
[8] | 李义良, 赵奋成, 吴惠姗. 湿地松、加勒比松SRAP反应体系的优化及引物筛选[J]. 广东林业科技, 2011,27(3):8-13. |
LI Y L, ZHAO F C, WU H S. Optimization of SRAP reaction system and primers screening of Pinus elliottii and P. caribaea [J]. Guangdong Forestry Science and Technology, 2011,27(3):8-13. DOI: 10.3969/j.issn.1006-4427.2011.03.002. | |
[9] | 赵衡. 湿地松EST-SSR引物开发及其亲缘关系的研究[D]. 南昌:江西农业大学, 2016. |
ZHAO H. EST-SSR primer design and aanlysis the genetic relationship in Pinus elliottii [D]. Nanchang:Jiangxi Agricultural University, 2016. | |
[10] | 雷蕾, 潘显强, 张露, 等. 湿地松左旋β-蒎烯合成酶基因PeTPS-(-)BPin的同源克隆及生物信息学分析[J]. 江西农业大学学报, 2015,37(2):205-211. |
LEI L, PAN X Q, ZHANG L, et al. An analysis of cloning and bioinformatics of sinistral beta pinene synthetase gene Pe TPS-(-) BPin in Pinus elliottii [J]. Acta Agriculturae Universitatis Jiangxiensis, 2015,37(2):205-211.DOI: 10.13836/j.jjau.2015031. | |
[11] | 易能君, 韩正敏, 尹佟明, 等. 湿地松抗病种子园的遗传多样性分析[J]. 林业科学, 2000,36(S1):51-55.DOI: 10.3321/j.issn:1001-7488.2000.Z1.007. |
YI N J, HANG Z M, YIN T M, et al. Genetic variation of rapd markers in a disease resistant seed orchard of Pinus elliottii Engelm .[J]. Scientia Silvae Sinicae, 2000,36(S1):51-55.DOI: 10.3321/j.issn:1001-7488.2000.Z1.007. | |
[12] |
PARIDA S K, KALIA S K, KAUL S, et al. Informative genomic microsatellite markers for efficient genotyping applications in sugarcane[J]. Theoretical and Applied Genetics, 2009, 118(2):327-338.DOI: 10.1007/s00122-008-0902-4.
doi: 10.1007/s00122-008-0902-4 |
[13] | 王晋, 王世红, 赖勇, 等. 大麦SSR标记遗传多样性及群体遗传结构分析[J]. 核农学报, 2014,28(2):177-185. |
WANG J, WANG S H, LAI Y, et al. Genetic diversity and population structure analysis by using SSR markers in barley[J]. Journal of Nuclear Agricultural Sciences, 2014,28(2):177-185.DOI: 10.11869/j.issn.100-8551.2014.02.0177. | |
[14] |
WESTBROOK J W, CHHATRE V E, WU L S, et al. A consensus genetic map for Pinus taeda and Pinus elliottii and extent of linkage disequilibrium in two genotype-phenotype discovery populations of Pinus taeda[J]. G3-Genes|Genomes|Genetics, 2015, 5(8):1685-1694.DOI: 10.1534/g3.115.019588.
doi: 10.1534/g3.115.019588 |
[15] |
YANG H B, ZHANG R, JIN G Q, et al. Assessing the genetic diversity and genealogical reconstruction of cypress (Cupressus funebris Endl.) breeding parents using SSR markers[J]. Forests, 2016, 7(12):160.DOI: 10.3390/f7080160.
doi: 10.3390/f7080160 |
[16] |
ZHU X L, XU F, ZHAO S, et al. Inferring the evolutionary history of outcrossing populations through computing a multiallelic linkage-linkage disequilibrium map[J]. Methods in Ecology and Evolution, 2015, 6(11):1259-1269.DOI: 10.1111/2041-210x.12428.
doi: 10.1111/mee3.2015.6.issue-11 |
[17] |
WANG Z, GERSTEIN M, SNYDER M. RNA-Seq:a revolutionary tool for transcriptomics[J]. Nature Reviews Genetics, 2009, 10(1):57-63.DOI: 10.1038/nrg2484.
doi: 10.1038/nrg2484 |
[18] |
TARIQ M A, KIM H J, JEJELOWO O, et al. Whole-transcriptome RNAseq analysis from minute amount of total RNA[J]. Nucleic Acids Research, 2011, 39(18):e120.DOI: 10.1093/nar/gkr547.
doi: 10.1093/nar/gkr547 |
[19] | 张振, 张含国, 莫迟, 等. 红松转录组SSR分析及EST-SSR标记开发[J]. 林业科学, 2015,51(8):114-120. |
ZHANG Z, ZHANG H G, MO C, et al. Transcriptome sequencing analysis and development of EST-SSR markers for Pinus koraiensis [J]. Scientia Silvae Sinicae, 2015,51(8):114-120.DOI: 10.11707/j.1001-7488.20150815. | |
[20] | 梅利那, 范付华, 崔博文, 等. 基于马尾松转录组的SSR分子标记开发及种质鉴定[J]. 农业生物技术学报, 2017,25(6):991-1002. |
MEI L N, FAN F H, CUI B W, et al. Development of SSR molecular markers based on transcriptome sequences and germplasm identification in Masson pine (Pinus massoniana) [J]. Journal of Agricultural Biotechnologyl, 2017,25(6):991-1002.DOI: 10.3969/j.issn.1674-7968.2017.06.014. | |
[21] | 文亚峰, 韩文军, 周宏, 等. 杉木转录组SSR挖掘及EST-SSR标记规模化开发[J]. 林业科学, 2015,51(11):40-49. |
WEN Y F, HAN W J, ZHOU H, et al. SSR mining and development of EST-SSR markers for Cunninghamia lanceolata based on transcriptome sequences [J]. Scientia Silvae Sinicae, 2015,51(11):40-49.DOI: 10.11707/j.1001-7488.20151106. | |
[22] |
GRABHERR M G, HAAS B J, YASSOUR M, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome[J]. Nature Biotechnology, 2011, 29(7):644-652.DOI: 10.1038/nbt.1883.
doi: 10.1038/nbt.1883 |
[23] |
SCOTT K D, EGGLER P, SEATON G, et al. Analysis of SSRs derived from grape ESTs[J]. Theoretical and Applied Genetics, 2000, 100(5):723-726.DOI: 10.1007/s001220051344.
doi: 10.1007/s001220051344 |
[24] | ROZEN S, SKALETSKY H. Primer 3 on the WWW for general users and for biologist programmers[M]//Bioinformatics methods and protocols. New Jersey,USA: Humana Press, 2000:365-386. DOI: 10.1385/1-59259-192-2:365 |
[25] | ISELI C, JONGENEEL C V, BUCHER P. ESTScan:a program for detecting,evaluating,and reconstructing potential coding regions in EST sequences[J]. Proceedings of the International Conference on Intelligent Systems Molecular Biology, 1999:138-148.DOI: 10.1002/9780470999455.ch1. |
[26] | YEH F C, YANG R C, YANG R C, BOYLE T,. POPGENE version 1.31:microsoft windows-based freeware for population genetics analysis:quick user guide[CP/OL]. ( 1997)[2019]. https://sites.ualberta.ca/-fyeh/popgene.pdf. |
[27] | 杨秀艳, 孙晓梅, 张守攻, 等. 日本落叶松EST-SSR标记开发及二代优树遗传多样性分析[J]. 林业科学, 2011,47(11):52-58. |
YANG X Y, SUN X M, ZHANG S G, et al. Development of EST-SSR markers and genetic diversity analysis of the second cycle elite population in Larix kaempferi [J]. Scientia Silvae Sinicae, 2011,47(11):52-58. | |
[28] | 蔡年辉, 许玉兰, 徐杨, 等. 云南松转录组SSR的分布及其序列特征[J]. 云南大学学报(自然科学版), 2015,37(5):770-778. |
CAI N H, XU Y L, XU Y, et al. The distribution and characteristics of SSR in transcriptome of Pinus yunnanensis [J]. Journal of Yunnan University (Natural Sciences Edition), 2015,37(5):770-778.DOI: 10.7540/j.ynu.20150206. | |
[29] | 时小东, 朱学慧, 盛玉珍, 等. 基于转录组序列的楠木SSR分子标记开发[J]. 林业科学, 2016,52(11):71-78. |
SHI X D, ZHU X H, SHENG Y Z, et al. Development of SSR markers based on transcriptome sequence of Phoebe zhennan [J]. Scientia Silvae Sinicae, 2016,52(11):71-78. | |
[30] | 杨旭, 杨志玲, 谭美, 等. 厚朴转录组特征分析及EST-SSR标记的开发[J]. 核农学报, 2019,33(7):1318-1329. |
YANG X, YANG Z L, TAN M, et al. Characteristics analysis of Houpoëa officinalis transcription and development of EST-SSR markers [J]. Journal of Nuclear Agricultural Sciences, 2019,33(7):1318-1329. DOI: 10.11869/j.issn.100-8551.2019.07.1318. | |
[31] |
VARSHNEY R K, GRANER A, SORRELLS M E. Genic microsatellite markers in plants:features and applications[J]. Trends in Biotechnology, 2005, 23(1):48-55.DOI: 10.1016/j.tibtech.2004.11.005.
doi: 10.1016/j.tibtech.2004.11.005 |
[32] | 邓丽丽, 李德龙, 蔡年辉, 等. 基于高通量测序的思茅松微卫星位点的特征分析[J]. 中南林业科技大学学报, 2016,36(10):72-77,93. |
DENG L L, LI D L, CAI N H, et al. Characteristic analysis of microsatellite in Pinus kesiya var. langbianensis by using high-throughput sequencing [J]. Journal of Central South University of Forestry & Technology, 2016,36(10):72-77,93.DOI: 10.14067/j.cnki.1673-923x.2016.10.013. | |
[33] | 饶龙兵, 杨汉波, 郭洪英, 等. 基于桤木属转录组测序的SSR分子标记的开发[J]. 林业科学研究, 2016,29(6):875-882. |
RAO L B, YANG H B, GUO H Y, et al. Development of SSR molecular markers based on transcriptome sequences of Alnus [J]. Forest Research, 2016,29(6):875-882.DOI: 10.13275/j.cnki.lykxyj.2016.06.012. | |
[34] | 郭莺, 孟红岩, 林文珍, 等. 牛樟EST-SSR标记的开发及遗传多态性分析[J]. 热带作物学报, 2018,39(8):1561-1569. |
GUO Y, MENG H Y, LIN W Z, et al. Developing EST-SSR markers in Cinnamomum kanehirae and analyzing the genetic polymorphism [J]. Chinese Journal of Tropical Crops, 2018,39(8):1561-1569.DOI: 10.3969/j.issn.1000-2561.2018.08.014. | |
[35] | 温强, 徐林初, 江香梅, 等. 基于454测序的油茶DNA序列微卫星观察与分析[J]. 林业科学, 2013,49(8):43-50. |
WEN Q, XU L C, JIANG X M, et al. Survey and analysis of microsatellites from DNA sequences in Camellia species using 454 pyrosequencing [J]. Scientia Silvae Sinicae, 2013,49(8):43-50.DOI: 10.11707/j.1001-7488.20130807. | |
[36] | 史洁, 尹佟明, 管宏伟, 等. 油茶基因组微卫星特征分析[J]. 南京林业大学学报(自然科学版), 2012,36(2):47-51. |
SHI J, YIN T M, GUAN H W, et al. Characteristic analysis of microsatellites of Camellia spp .[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2012,36(2):47-51.DOI: 10.3969/j.issn.1000-2006.2012.02.010. | |
[37] |
LAWSON M J, ZHANG L. Distinct patterns of SSR distribution in the Arabidopis thaliana and rice genomes[J]. Genome Biology, 2006, 7(2):R14.DOI: 10.1186/gb-2006-7-2-r14.
doi: 10.1186/gb-2006-7-2-r14 |
[38] |
KUMPATLA S P, MUKHOPADHYAY S. Mining and survey of simple sequence repeats in expressed sequence tags of dicotyledonous species[J]. Genome, 2005, 48(6):985-998.DOI: 10.1139/g05-060.
doi: 10.1139/g05-060 |
[39] | 李珊珊, 曾艳飞, 何彩云, 等. 基于沙棘转录组序列开发EST-SSR分子标记[J]. 林业科学研究, 2017,30(1):69-74. |
LI S S, ZENG Y F, HE C Y, et al. Development of EST-SSR markers based on seabuckthorn transcriptomic sequences[J]. Forest Research, 2017,30(1):69-74.DOI: 10.13275/j.cnki.lykxyj.2017.01.010. | |
[40] | 赵能, 原晓龙, 缪福俊, 等. 思茅松转录组SSR分析及标记开发[J]. 生物技术通报, 2017,33(5):71-77. |
ZHAO N, YUAN X L, MIAO F J, et al. Development of SSR molecular markers based on transcriptome data of Pinus kesiya var. langbianensis [J]. Biotechnology Bulletin, 2017,33(5):71-77.DOI: 10.13560/j.cnki.biotech.bull.1985.2017.05.010. | |
[41] | BOTSTEIN D, WHITE R L, SKOLNICK M, et al. Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J]. American Journal of Human Genetics, 1980, 32(3):314-331.DOI: 10.1016/0165-1161(81)90274-0. |
[1] | GU Chenrui, YUAN Qihang, JIANG Jing, MU Huaizhi, LIU Guifeng. Mapping leaf shape affecting gene of Betula pendula ‘Dalecarlica’ by association study based on transcriptome sequencing [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 39-46. |
[2] | LUO Qianqian, LI Fengqing, XIAO Deqing, DENG Zhangwen, WANG Jianhua, ZHOU Zhichun. Mating system analyses of two natural populations of Taxus wallichiana var. mairei [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 80-86. |
[3] | GUO Wei, HAN Xiu, ZHANG Li, WANG Ying, DU Hui, YAN Yu, SUN Zhongkui, ZHANG Lin, LI Guohua, LUO Lei. Morphological, photosynthetic physiological and transcriptome analyses of Pteroceltis tatarinowii in response to different nitrogen application levels [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 87-96. |
[4] | LIAO Huanqin, YANG Huixiao, XU Fang, PAN Wen, ZHANG Weihua, CHEN Xinyu, ZHU Baozhu, XU Bin, WANG Yuxia, YANG Xiaohui. Expression analysis of rooting-related genes between different clones of Eucalyptus urophylla in tissue culture [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 114-122. |
[5] | WANG Zhiyi, LI Zhenfang, PENG Chan, CHEN Ying, ZHANG Xinye. Genetic diversity analysis of Lagerstroemia indica based on fluorescent SSR markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 61-69. |
[6] | WANG Huanli, YAN Lingjun, HUANG Xi, WANG Zhongwei, TANG Shijie. Genetic diversity and genetic structure of Tilia miqueliana population [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 145-153. |
[7] | FENG Yining, LI Yingang, QI Ming, ZHOU Pengyan, ZHOU Qi, DONG Le, XU Li’an. Genetic diversity analyses of Phoebe bournei representative populations in Fujian Province based on SSR markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 102-108. |
[8] | LI Dandan, WENG Qijie, GAN Siming, ZHOU Changpin, HUANG Shineng, LI Mei. Identification of full-sib seedlings from an open-pollinated family of Archidendron clypearia based on EST-SSR markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 95-101. |
[9] | LYU Feng, XIE Xiaoman, HAN Biao, LU Yizeng, WANG Lei, DONG Xin, WANG Yan, LU Lu, LIU Li, ZONG Shaoning, LI Wenqing. Genetic diversity analyses of Quercus acutissima based on SSR markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 109-116. |
[10] | GE Dapeng, REN Yuan, ZHAO Jun, WANG Yuting, LIU Xueqing, YUAN Zhaohe. Genetic diversity among wild populations of pomegranate in Tibet by SSR analyses [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 127-133. |
[11] | YUAN Jinling, MA Jingxia, ZHONG Yuanbiao, YUE Jinjun. SSR-based hybrid identification, genetic analyses and fingerprint development of hybridization progenies from sympodial bamboo (Bambusoideae, Poaceae) [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 10-18. |
[12] | CHEN Xingbin, XU Haining, XIAO Fuming, SUN Shiwu, LOU Yongfeng, ZOU Yuanxi, XU Xiaoqiang. Genetic diversity and paternity analyses in a 1.5th generation seed orchard of Chenshan red-heart Chinese fir [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 87-92. |
[13] | HE Xudong, ZHENG Jiwei, SUN Chong, HE Kaiyue, WANG Baosong. Construction of fingerprints for 33 varieties in Salicaceae [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 35-42. |
[14] | ZANG Mingyue, LI Xuan, FANG Yanming. Genetic diversity analysis among natural populations of Quercus fabri based on SSR markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(1): 63-69. |
[15] | JU Ye, JIANG Jianping, YIN Zengfang, WEI Qiang. Full-length transcriptome sequencing and annotation analyses of Bambusa multiplex sheath [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 175-183. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||