JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (6): 24-30.doi: 10.12302/j.issn.1000-2006.202010017
Special Issue: 专题报道; 林木 CRISPR/Cas基因编辑专题
Previous Articles Next Articles
HOU Jing(), MAO Jinyan, ZHAI Hui, WANG Jie, YIN Tongming*()
Received:
2020-10-12
Accepted:
2021-02-27
Online:
2021-11-30
Published:
2021-12-02
Contact:
YIN Tongming
E-mail:jinghou@njfu.edu.cn;tmyin@njfu.com.cn
CLC Number:
HOU Jing, MAO Jinyan, ZHAI Hui, WANG Jie, YIN Tongming. Application of CRISPR/Cas technique in woody plant improvement[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 24-30.
[1] | 万志兵, 戴晓港, 尹佟明 林木遗传育种基础研究热点述评[J]. 林业科学, 2012, 48(2), 48:150-154. |
WAN Z B, DAI X G, YIN T M. Review on the hot topics of the basic studies for forest genetics and breeding[J]. Sci Silvae Sin, 2012, 48(2), 48:150-154. | |
[2] |
BEYING N, SCHMIDT C, PACHER M, et al. CRISPR-Cas9-mediated induction of heritable chromosomal translocations in Arabidopsis[J]. Nat Plants, 2020, 6(6):638-645.DOI: 10.1038/s41477-020-0663-x.
doi: 10.1038/s41477-020-0663-x |
[3] |
SCHWARTZ C, LENDERTS B, FEIGENBUTZ L, et al. CRISPR-Cas9-mediated 75.5-Mb inversion in maize[J]. Nat Plants, 2020, 6(12):1427-1431.DOI: 10.1038/s41477-020-00817-6.
doi: 10.1038/s41477-020-00817-6 |
[4] | 单奇伟, 高彩霞 植物基因组编辑及衍生技术最新研究进展[J]. 遗传, 2015, 37(10), 37:953-973. |
SHAN Q W, GAO C X. Research progress of genome editing and derivative technologies in plants[J]. Hereditas, 2015, 37(10), 37:953-973.DOI: 10.16288/j.yczz.15-156.
doi: 10.16288/j.yczz.15-156 |
|
[5] |
PUCHTA H. Using CRISPR/Cas in three dimensions: towards synthetic plant genomes,transcriptomes and epigenomes[J]. Plant J, 2016, 87(1):5-15.DOI: 10.1111/tpj.13100.
doi: 10.1111/tpj.13100 |
[6] |
SHAN S, SOLTIS P S, SOLTIS D E, et al. Considerations in adapting CRISPR/Cas9 in nongenetic model plant systems[J]. Appl Plant Sci, 2020, 8(1):e11314.DOI: 10.1002/aps3.11314.
doi: 10.1002/aps3.11314 |
[7] |
CHEN K, WANG Y, ZHANG R, et al. CRISPR/cas genome editing and precision plant breeding in agriculture[J]. Annu Rev Plant Biol, 2019, 70:667-697.DOI: 10.1146/annurev-arplant-050718-100049.
doi: 10.1146/annurev-arplant-050718-100049 |
[8] |
VAN ZEIJL A, WARDHANI T A K, SEIFI KALHOR M, et al. CRISPR/Cas9-mediated mutagenesis of four putative symbiosis genes of the tropical tree Parasponia andersonii reveals novel phenotypes[J]. Front Plant Sci, 2018, 9:284.DOI: 10.3389/fpls.2018.00284.
doi: 10.3389/fpls.2018.00284 |
[9] |
FAN D, LIU T, LI C, et al. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation[J]. Sci Rep, 2015, 5:12217.DOI: 10.1038/srep12217.
doi: 10.1038/srep12217 |
[10] |
NISHITANI C, HIRAI N, KOMORI S, et al. Efficient genome editing in apple using a CRISPR/Cas9 system[J]. Sci Rep, 2016, 6:31481.DOI: 10.1038/srep31481.
doi: 10.1038/srep31481 |
[11] |
ODIPIO J, ALICAI T, INGELBRECHT I, et al. Efficient CRISPR/Cas9 genome editing of phytoene desaturase in Cassava[J]. Front Plant Sci, 2017, 8:1780.DOI: 10.3389/fpls.2017.01780.
doi: 10.3389/fpls.2017.01780 |
[12] |
NAKAJIMA I, BAN Y, AZUMA A, et al. CRISPR/Cas9-mediated targeted mutagenesis in grape[J]. PLoS One, 2017, 12(5):e0177966.DOI: 10.1371/journal.pone.0177966.
doi: 10.1371/journal.pone.0177966 |
[13] |
REN C, GUO Y, KONG J, et al. Knockout of VvCCD8 gene in grapevine affects shoot branching[J]. BMC Plant Biol, 2020, 20(1):41.DOI: 10.1186/s12870-020-2263-3.
doi: 10.1186/s12870-020-2263-3 |
[14] |
FINLAYSON S A. Arabidopsis Teosinte Branched1-like 1 regulates axillary bud outgrowth and is homologous to monocot Teosinte Branched1[J]. Plant Cell Physiol, 2007, 48(5):667-677. DOI: 10.1093/pcp/pcm044.
doi: 10.1093/pcp/pcm044 |
[15] |
MUHR M, PAULAT M, AWWANAH M, et al. CRISPR/Cas9-mediated knockout of Populus BRANCHED1 and BRANCHED2 orthologs reveals a major function in bud outgrowth control[J]. Tree Physiol, 2018, 38(10):1588-1597.DOI: 10.1093/treephys/tpy088.
doi: 10.1093/treephys/tpy088 |
[16] | 田敏, 夏琼梅, 李纪元. 植物的次生生长及其分子调控[J]. 遗传, 2007, 29(11):1324-1330. |
TIAN M, XIA Q M, LI J Y. The secondary growth in plant and its molecular regulation[J]. Hereditas, 2007, 29(11):1324-1330.DOI: 10.16288/j.yczz.2007.11.006.
doi: 10.16288/j.yczz.2007.11.006 |
|
[17] |
TAKATA N, AWANO T, NAKATA M T, et al. Populus NST/SND orthologs are key regulators of secondary cell wall formation in wood fibers,phloem fibers and xylem ray parenchyma cells[J]. Tree Physiol, 2019, 39(4):514-525.DOI: 10.1093/treephys/tpz004.
doi: 10.1093/treephys/tpz004 |
[18] |
YANG L, ZHAO X, RAN L, et al. PtoMYB156 is involved in negative regulation of phenylpropanoid metabolism and secondary cell wall biosynjournal during wood formation in poplar[J]. Sci Rep, 2017, 7:41209.DOI: 10.1038/srep41209.
doi: 10.1038/srep41209 |
[19] |
ZHOU X H, JACOBS T B, XUE L J, et al. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate:CoA ligase specificity and redundancy[J]. New Phytol, 2015, 208(2):298-301.DOI: 10.1111/nph.13470.
doi: 10.1111/nph.13470 |
[20] | 段硕. 柑橘易感溃疡病基因CsLOB1功能的研究[D]. 重庆:西南大学, 2017. |
DUAN S. Dissecting the function of susceptibility gene CsLOB1 of Citrus bacterial canker disease[D]. Chongqing:Southwest University, 2017. | |
[21] |
JIA H, ZHANG Y, ORBOVI $\acute{C}_{v}$, et al. Genome editing of the disease susceptibility gene CsLOB1 in Citrus confers resistance to Citrus canker[J]. Plant Biotechnol J, 2017, 15(7):817-823.DOI: 10.1111/pbi.12677.
doi: 10.1111/pbi.12677 |
[22] |
PENG A, CHEN S, LEI T, et al. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in Citrus[J]. Plant Biotechnol J, 2017, 15(12):1509-1519.DOI: 10.1111/pbi.12733.
doi: 10.1111/pbi.12733 |
[23] |
JIA H G, ORBOVIC V, WANG N. CRISPR-LbCas12a-mediated modification of Citrus[J]. Plant Biotechnol J, 2019, 17(10):1928-1937.DOI: 10.1111/pbi.13109.
doi: 10.1111/pbi.13109 |
[24] | 郑小波. 疫霉菌及其研究技术[M]. 北京: 中国农业出版社, 1997. |
ZHENG X B. Phytophthora and its research technology[M]. Beijing: Chinese Agriculture Press, 1997. | |
[25] |
SHI Z, ZHANG Y, MAXIMOVA S N, et al. TcNPR3 from Theobroma cacao functions as a repressor of the pathogen defense response[J]. BMC Plant Biol, 2013, 13:204.DOI: 10.1186/1471-2229-13-204.
doi: 10.1186/1471-2229-13-204 |
[26] |
FISTER A S, LANDHERR L, MAXIMOVA S N, et al. Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao[J]. Front Plant Sci, 2018, 9:268.DOI: 10.3389/fpls.2018.00268.
doi: 10.3389/fpls.2018.00268 |
[27] | 童蕴慧, 纪兆林, 徐敬友, 等. 灰霉病生物防治研究进展[J]. 中国生物防治, 2003, 19(3):131-135. |
TONG Y H, JI Z L, XU J Y, et al. Research progress on biological control of gray mold[J]. Chin J Biol Control, 2003, 19(3):131-135.DOI: 10.16409/j.cnki.2095-039x.2003.03.009.
doi: 10.16409/j.cnki.2095-039x.2003.03.009 |
|
[28] |
黄幸, 丁峰, 彭宏祥, 等. 植物WRKY转录因子家族研究进展[J]. 生物技术通报, 2019, 35(12):129-143.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0626 |
HUANG X, DING F, PENG H X, et al. Research progress on family of plant WRKY transcription factors[J]. Biotechnol Bull, 2019, 35(12):129-143.DOI: 10.13560/j.cnki.biotech.bull.1985.2019-0626.
doi: 10.13560/j.cnki.biotech.bull.1985.2019-0626 |
|
[29] |
WANG X, TU M, WANG D, et al. CRISPR/Cas9-mediated efficient targeted mutagenesis in grape in the first generation[J]. Plant Biotechnol J, 2018, 16(4):844-855.DOI: 10.1111/pbi.12832.
doi: 10.1111/pbi.12832 |
[30] |
FEECHAN A, JERMAKOW A M, TORREGROSA L, et al. Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew[J]. Funct Plant Biol, 2008, 35(12):1255.DOI: 10.1071/fp08173.
doi: 10.1071/fp08173 |
[31] |
PESSINA S, LENZI L, PERAZZOLLI M, et al. Knockdown of MLO genes reduces susceptibility to powdery mildew in grapevine[J]. Hortic Res, 2016, 3:16016.DOI: 10.1038/hortres.2016.16.
doi: 10.1038/hortres.2016.16 |
[32] |
MALNOY M, VIOLA R, JUNG M H, et al. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins[J]. Front Plant Sci, 2016, 7:1904.DOI: 10.3389/fpls.2016.01904.
doi: 10.3389/fpls.2016.01904 |
[33] |
GOMEZ M A, LIN Z D, MOLL T, et al. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence[J]. Plant Biotechnol J, 2019, 17(2):421-434.DOI: 10.1111/pbi.12987.
doi: 10.1111/pbi.12987 |
[34] | 鲁松. 干旱胁迫对植物生长及其生理的影响[J]. 江苏林业科技, 2012, 39(4):51-54. |
LU S. Effects of drought stress on plant growth and physiological traits[J]. J Jiangsu For Sci Technol, 2012, 39(4):51-54.DOI: 10.3969/j.issn.1001-7380.2012.04.015.
doi: 10.3969/j.issn.1001-7380.2012.04.015 |
|
[35] |
BRUNNER I, HERZOG C, DAWES M A, et al. How tree roots respond to drought[J]. Front Plant Sci, 2015, 6:547.DOI: 10.3389/fpls.2015.00547.
doi: 10.3389/fpls.2015.00547 |
[36] |
ZHOU Y, ZHANG Y, WANG X, et al. Root-specific NF-Y family transcription factor,PdNF-YB21,positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus[J]. New Phytol, 2020, 227(2):407-426.DOI: 10.1111/nph.16524.
doi: 10.1111/nph.16524 |
[37] |
LI S, LIN Y J, WANG P, et al. The AREB1 transcription factor influences histone acetylation to regulate drought responses and tolerance in Populus trichocarpa[J]. Plant Cell, 2019, 31(3):663-686.DOI: 10.1105/tpc.18.00437.
doi: 10.1105/tpc.18.00437 |
[38] |
JIAO Y N, WICKETT N J, AYYAMPALAYAM S, et al. Ancestral polyploidy in seed plants and angiosperms[J]. Nature, 2011, 473(7345):97-100.DOI: 10.1038/nature09916.
doi: 10.1038/nature09916 |
[39] |
FRIEDLAND A E, TZUR Y B, ESVELT K M, et al. Heritable genome editing in C. elegans via a CRISPR-Cas9 system[J]. Nat Methods, 2013, 10(8):741-743.DOI: 10.1038/nmeth.2532.
doi: 10.1038/nmeth.2532 |
[40] |
ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3):759-771.DOI: 10.1016/j.cell.2015.09.038.
doi: 10.1016/j.cell.2015.09.038 |
[41] |
COX D B T, GOOTENBERG J S, ABUDAYYEH O O, et al. RNA editing with CRISPR-Cas13[J]. Science, 2017, 358(6366):1019-1027.DOI: 10.1126/science.aaq0180.
doi: 10.1126/science.aaq0180 |
[42] |
HARRINGTON L B, BURSTEIN D, CHEN J S, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416):839-842.DOI: 10.1126/science.aav4294.
doi: 10.1126/science.aav4294 |
[43] |
LU Y, YE X, GUO R, et al. Genome-wide targeted mutagenesis in rice using the CRISPR/Cas9 system[J]. Mol Plant, 2017, 10(9):1242-1245.DOI: 10.1016/j.molp.2017.06.007.
doi: 10.1016/j.molp.2017.06.007 |
[44] |
MENG X, YU H, ZHANG Y, et al. Construction of a genome-wide mutant library in rice using CRISPR/Cas9[J]. Mol Plant, 2017, 10(9):1238-1241.DOI: 10.1016/j.molp.2017.06.006.
doi: 10.1016/j.molp.2017.06.006 |
[45] |
ZHANG R, LIU J, CHAI Z, et al. Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing[J]. Nat Plants, 2019, 5(5):480-485.DOI: 10.1038/s41477-019-0405-0.
doi: 10.1038/s41477-019-0405-0 |
[46] |
TIAN S, JIANG L, CUI X, et al. Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing[J]. Plant Cell Rep, 2018, 37(9):1353-1356.DOI: 10.1007/s00299-018-2299-0.
doi: 10.1007/s00299-018-2299-0 |
[47] |
QIN L, LI J Y, WANG Q Q, et al. High-efficient and precise base editing of C·G to T·A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system[J]. Plant Biotechnol J, 2020, 18(1):45-56.DOI: 10.1111/pbi.13168.
doi: 10.1111/pbi.13168 |
[48] |
LI C, ZHANG R, MENG X, et al. Targeted,random mutagenesis of plant genes with dual cytosine and adenine base editors[J]. Nat Biotechnol, 2020, 38(7):875-882.DOI: 10.1038/s41587-019-0393-7.
doi: 10.1038/s41587-019-0393-7 |
[49] |
KUZMA J, GRIEGER K. Community-led governance for gene-edited crops[J]. Science, 2020, 370(6519):916-918.DOI: 10.1126/science.abd1512.
doi: 10.1126/science.abd1512 |
[50] |
MA X, ZHANG X, LIU H, et al. Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9[J]. Nat Plants, 2020, 6(7):773-779.DOI: 10.1038/s41477-020-0704-5.
doi: 10.1038/s41477-020-0704-5 |
[51] | 毛金燕, 翟惠, 王洁, 等. CRISPR/Cas技术及其作用机理[J/OL]. 分子植物育种:1-13.(2020 -11-18)[2021-02-27]. |
MAO J Y, ZHAI H, WANG J, et al. CRISPR/Cas technology and its action mechanisms[J/OL]. Molecular Plant Breeding:1-13 [2021-02-27]. http://kns.cnki.net/kcms/detail/46.1068.S.20201118.1049.004.html. |
[1] | WANG Wei, QIU Zhinan, LI Shuang, BAI Xiangdong, LIU Guifeng, JIANG Jing. CRISPR/Cas9 ribonucleoprotein-mediated precise mutation of BpGLK1 in birch without T-DNA insertion [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 11-17. |
[2] | YANG Jiading, LIU Yujie, FENG Jianyuan, ZHANG Yuanlan. Nitrogen resorption machanism during leaf senescence in woody plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 1-8. |
[3] | LI Mei, SHI Jisen, LUO Jianzhong, GAN Siming. Progresses of eucalypt genetics and breeding studies in China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 41-50. |
[4] | WANG Ziyue, ZHEN Yan, LIU Guangxin, XI Mengli. Assay for transposase-accessible chromatin with high-throughput sequencing and its application prospect in woody plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 1-10. |
[5] | WANG Zhuwen, GUO Yanjiao, LI Shuang, ZHOU Chenguang, CHIANG Vincent, LI Wei. Functional analyses of PtrHBI 1 gene in Populus trichocarpa based on CRISPR/Cas9 [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 31-39. |
[6] | SUN Jiatong, GUO Yanjiao, LI Shuang, ZHOU Chenguang, CHIANG Vincent, LI Wei. A functional study of bHLH106 transcription factor based on CRISPR/Cas9 in Populus trichocarpa [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 15-23. |
[7] | YUAN Zhaohe, CHEN Lide, ZHANG Xinhui, ZHAO Yujie. Advances in molecular breeding of fruit trees [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 1-12. |
[8] | TIAN Chengming, WANG Xiaolian, YU Lu, HAN Zhu. A review on the studies of molecular interaction between forest trees and phytopathogens [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(1): 1-12. |
[9] | GAN Siming. A review on genomics information resources available for molecular breeding studies in forest trees [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(4): 1-11. |
[10] | LI Dong, HUANG Li-li, HAN Su-fen*. 16S rDNA Sequence Analysis of 23 Rhizobium Strains Isolated from Leguminosae Woody Plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2007, 31(06): 117-120. |
[11] | PENG Fang-ren1, GUO Hong-yan1, YANG Yu-zhen1,2, GUO Yan-qing1. Progresses of Research on Ammonium Assimilation in Woody Plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2006, 30(06): 117-122. |
[12] | GUO Hong-yan, GUO Yan-qing, PENG Fang-ren*. The Research Progresses on the Mechanism of Metabolization of Vegetative Storage Protein in Woody Plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2006, 30(04): 123-128. |
[13] | LI Mei. Molecuar Genetic Varition of Breeding Populations and Molecular Breeding in Chinese Fir [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2001, 25(05): 39-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||