JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (3): 194-202.doi: 10.12302/j.issn.1000-2006.202108050
Previous Articles Next Articles
NIE Luyi(), DONG Lihu, LI Fengri*(), MIAO Zheng, XIE Longfei
Received:
2021-08-29
Accepted:
2021-10-07
Online:
2022-05-30
Published:
2022-06-10
Contact:
LI Fengri
E-mail:ff696977@qq.com;fengrili@126.com
CLC Number:
NIE Luyi, DONG Lihu, LI Fengri, MIAO Zheng, XIE Longfei. Construction of taper equation for Larix olgensis based on two-level nonlinear mixed effects model[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 194-202.
Table 1
Statistics of stand factors and tree factors in each plot for Larix olgensis"
统计量 statistics | 林分因子 stand factors | 样木因子 tree factors | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
树龄/a tree age | 林分密度/ (株·hm-2) stand density | 胸径/cm DBH | 每公顷 断面积/ (m2·hm-2) BAS | 树高/m tree height | 胸径/cm DBH | 树高/m tree height | 冠长/m CL | 冠长率 CR | 冠幅/m CW | |
平均值 mean | 34 | 1 138.1 | 18.05 | 22.42 | 17.80 | 18.61 | 17.74 | 7.35 | 0.45 | 3.53 |
最小值 min | 9 | 275.0 | 5.80 | 4.98 | 6.16 | 2.00 | 3.80 | 2.30 | 0.20 | 1.10 |
最大值 max | 52 | 2 767.0 | 29.90 | 31.27 | 25.51 | 35.70 | 26.95 | 14.72 | 0.97 | 6.35 |
标准偏差 SD | 13 | 754.1 | 6.17 | 6.38 | 5.25 | 7.00 | 5.40 | 2.13 | 0.18 | 1.05 |
Table 3
Fit statistics and likelihood ratio tests (LRT) for models with different residual variance structures"
模型 model | 树内方差-协方差矩阵 Ri | 参数 parameters | 赤池信息准则 AIC | 贝叶斯信息准则 BIC | 对数似然值 LogLik | 似然比值 LRT | P |
---|---|---|---|---|---|---|---|
(10) | σ2Ini | 19 | 5 864.76 | 5 978.42 | -2 913.4 | ||
(11) | σ2ΓiIni | 20 | 5 586.55 | 5 706.18 | -2 773.3 | 280.33 | < 0.01 |
(12) | σ2G0.5iΓi | 21 | 5 426.38 | 5 551.99 | -2 692.2 | 162.06 | < 0.01 |
Table 4
Parameter estimates, and regression coefficients and standard errors for the model (9) to (12)"
项目 items | 参数 parameter | 模型(9) model(9) | 模型(10) model(10) | 模型(11) model(11) | 模型(12) model(12) |
---|---|---|---|---|---|
固定参数 fixed parameter | a1 | 1.000 6 | 0.973 8 | 0.948 1 | 0.949 4 |
a2 | 1.004 3 | 1.013 5 | 1.024 9 | 1.025 2 | |
a3 | 0.225 6 | 0.215 0 | 0.227 1 | 0.248 3 | |
a4 | -0.427 0 | -0.399 3 | -0.375 0 | -0.443 3 | |
a5 | 0.442 3 | 0.457 0 | 0.479 1 | 0.489 8 | |
a6 | 1.125 6 | 0.704 3 | 0.390 7 | 0.768 7 | |
a7 | 0.016 4 | 0.014 4 | 0.009 2 | 0.009 9 | |
a8 | -0.055 0 | -0.041 2 | -0.020 9 | -0.031 5 | |
a9 | 0.761 6 | 0.817 0 | 0.756 0 | 0.679 8 | |
方差组成 variance components | σ2 | 0.472 2 | 0.325 4 | 0.391 4 | 0.257 0 |
拟合优度 goodness of fit | | 0.989 7 | 0.995 6 | 0.994 8 | 0.994 1 |
RMSE | 0.826 5 | 0.535 6 | 0.582 8 | 0.623 1 |
Table 6
Examined statistics of the basic model(9) and global optimal sampling plan for the best mixed-model(12) and the sampling plan which below 0.1 relative height in the different relative height for the best mixed-model(12)"
模型 model | 抽样方案 sampling schemes | 平均绝对误差 MAE | 平均绝对误差百分比/% MAPE | 校准直径所在相对高 calibration diameter’s relative height |
---|---|---|---|---|
(9) | — | 0.572 6 | 5.32 | — |
Ⅰ-1 | 0.524 9 | 5.04 | 0.60 | |
Ⅰ-2 | 0.512 4 | 4.94 | 0,0.60 | |
Ⅰ-3 | 0.500 0 | 4.75 | 0,0.60,0.75 | |
Ⅰ-4 | 0.479 4 | 4.66 | 0,0.10,0.60,0.75 | |
Ⅰ-5 | 0.470 0 | 4.62 | 0,0.10,0.50,0.60,0.75 | |
(12) | Ⅰ-6 | 0.467 7 | 4.61 | 0,0.10,0.40,0.50,0.60,0.75 |
Ⅱ-1 | 0.536 6 | 5.22 | 0 | |
Ⅱ-2 | 0.529 7 | 5.18 | 0,0.10 | |
Ⅱ-3 | 0.524 8 | 5.15 | 0,0.04,0.10 | |
Ⅱ-4 | 0.521 3 | 5.14 | 0,0.04,0.08,0.10 | |
Ⅱ-5 | 0.520 3 | 5.14 | 0,0.04,0.06,0.08,0.10 | |
Ⅱ-6 | 0.526 6 | 5.15 | 0,0.02,0.04,0.06,0.08,0.10 |
[1] | 梅光义, 孙玉军. 国内外削度方程研究进展[J]. 世界林业研究, 2015, 28(4): 44-49. |
MEI G Y, SUN Y J. Research progress in stem taper[J]. World For Res, 2015, 28(4): 44-49. DOI: 10.13348/j.cnki.sjlyyj.2015.04.006.
doi: 10.13348/j.cnki.sjlyyj.2015.04.006 |
|
[2] |
DUAN A, ZHANG S, ZHANG X, et al. Development of a stem taper equation and modelling the effect of stand density on taper for Chinese fir plantations in southern China[J]. Peer J, 2016, 4: e1929. DOI: 10.7717/peerj.1929.
doi: 10.7717/peerj.1929 |
[3] |
SANQUETTA M N I, MCTAGUE J P, FERRAÇO S H, et al. What factors should be accounted for when developing a generalized taper function for black wattle trees?[J]. Can J For Res, 2020, 50(11): 1113-1123. DOI: 10.1139/cjfr-2020-0163.
doi: 10.1139/cjfr-2020-0163 |
[4] |
LIU Y, YUE C F, WEI X H, et al. Tree profile equations are significantly improved when adding tree age and stocking degree: an example for Larix gmelinii in the Greater Khingan Mountains of Inner Mongolia, northeast China[J]. Eur J For Res, 2020, 139(3): 443-458. DOI: 10.1007/s10342-020-01261-z.
doi: 10.1007/s10342-020-01261-z |
[5] |
SHARMA M. Incorporating stand density effects in modeling the taper of red pine plantations[J]. Can J For Res, 2020, 50(8): 751-759. DOI: 10.1139/cjfr-2020-0064.
doi: 10.1139/cjfr-2020-0064 |
[6] |
LARSON P R. Stem form development of forest trees[J]. For Sci, 1963, 9(S2): a0001-42. DOI: 10.1093/forestscience/9.s2.a0001.
doi: 10.1093/forestscience/9.s2.a0001 |
[7] | LEITES L P, ROBINSON A P. Improving taper equations of loblolly pine with crown dimensions in a mixed-effects modeling framework[J]. For Sci, 2004, 50(2): 204-212. |
[8] | WEISKITTEL A R, HANN D W, KERSHAW J A, et al. Forest growth and yield modeling[M]. Chichester: John Wiley & Sons, Ltd, 2011. |
[9] |
LI R X, WEISKITTEL A R. Comparison of model forms for estimating stem taper and volume in the primary conifer species of the north American Acadian Region[J]. Ann For Sci, 2010, 67(3): 302.DOI: 10.1051/forest/2009109.
doi: 10.1051/forest/2009109 |
[10] |
JIANG L C, BROOKS J R, HOBBS G R. Using crown ratio in yellow-poplar compatible taper and volume equations[J]. North J Appl for, 2007, 24(4): 271-275. DOI: 10.1093/njaf/24.4.271.
doi: 10.1093/njaf/24.4.271 |
[11] | 符利勇, 唐守正, 张会儒, 等. 基于多水平非线性混合效应蒙古栎林单木断面积模型[J]. 林业科学研究, 2015, 28(1): 23-31. |
FU L Y, TANG S Z, ZHANG H R, et al. Multilevel nonlinear mixed-effects basal area models for individual trees of Quercus mongolica[J]. For Res, 2015, 28(1): 23-31. DOI: 10.13275/j.cnki. lykxyj.2015.01.004.
doi: 10.13275/j.cnki. lykxyj.2015.01.004 |
|
[12] |
SHAHZAD M K, HUSSAIN A, BURKHART H E, et al. Stem taper functions for Betula platyphylla in the Daxing’an Mountains, northeast China[J]. J For Res, 2021, 32(2): 529-541. DOI: 10.1007/s11676-020-01152-4.
doi: 10.1007/s11676-020-01152-4 |
[13] |
LIU Y, TRANCOSO R, MA Q, et al. Incorporating climate effects in Larix gmelinii improves stem taper models in the Greater Khingan Mountains of Inner Mongolia, northeast China[J]. For Ecol Manag, 2020, 464: 118065. DOI: 10.1016/j.foreco.2020.118065.
doi: 10.1016/j.foreco.2020.118065 |
[14] |
CAO Q V, WANG J. Calibrating fixed- and mixed-effects taper equations[J]. For Ecol Manag, 2011, 262(4): 671-673. DOI: 10.1016/j.foreco.2011.04.039.
doi: 10.1016/j.foreco.2011.04.039 |
[15] |
CAO Q V, WANG J. Evaluation of methods for calibrating a tree taper equation[J]. For Sci, 2015, 61(2): 213-219. DOI: 10.5849/forsci.14-008.
doi: 10.5849/forsci.14-008 |
[16] |
SHARMA M, PARTON J. Modeling stand density effects on taper for jack pine and black spruce plantations using dimensional analysis[J]. For Sci, 2009, 55(3): 268-282. DOI: 10.1093/forestscience/55.3.268.
doi: 10.1093/forestscience/55.3.268 |
[17] |
KOZAK A. My last words on taper equations[J]. For Chron, 2004, 80(4): 507-515. DOI: 10.5558/tfc80507-4.
doi: 10.5558/tfc80507-4 |
[18] | 高慧淋, 李凤日, 董利虎. 基于分段回归的人工红松冠形预估模型[J]. 北京林业大学学报, 2015, 37(3): 76-83. |
GAO H L, LI F R, DONG L H. Crown-shape model of a Pinus koraiensis plantation in northeastern China[J]. J Beijing For Univ, 2015, 37(3): 76-83. DOI: 10.13332/j.1000-1522.20140324.
doi: 10.13332/j.1000-1522.20140324 |
|
[19] |
SHARMA R, VACEK Z, VACEK S, et al. A nonlinear mixed-effects height-to-diameter ratio model for several tree species based on Czech national forest inventory data[J]. Forests, 2019, 10(1): 70. DOI: 10.3390/f10010070.
doi: 10.3390/f10010070 |
[20] | TRINCADO G, BURKHART H E. A generalized approach for modeling and localizing stem profile curves[J]. For Sci, 2006, 52(6): 670-682. |
[21] |
VANDERSCHAAF C L, BURKHART H E. Comparison of methods to estimate Reineke’s maximum size-density relationship species boundary line slope[J]. For Sci, 2007, 53(3): 435-442. DOI: 10.1093/forestscience/53.3.435.
doi: 10.1093/forestscience/53.3.435 |
[22] | 许延丽. 兴安落叶松树干削度和树皮厚度及材积的相容可加性研究[D]. 哈尔滨: 东北林业大学, 2019. |
XU Y L. Study on additive equations of stem taper and bark thickness and compatible volume equations for Dahurian larch[D]. Harbin: Northeast Forestry University, 2019. | |
[23] |
PARRESOL B R. Modeling multiplicative error variance: an example predicting tree diameter from stump dimensions in baldcypress[J]. For Sci, 1993, 39(4): 670-679. DOI: 10.1093/forestscience/39.4.670.
doi: 10.1093/forestscience/39.4.670 |
[24] | 谢龙飞, 董利虎, 李凤日. 人工长白落叶松立木叶面积预估模型[J]. 应用生态学报, 2018, 29(9): 2843-2851. |
XIE L F, DONG L H, LI F R. Predicting models of leaf area for trees in Larix olgensis plantation[J]. Chin J Appl Ecol, 2018, 29(9): 2843-2851. DOI: 10.13287/j.1001-9332. 201809.011.
doi: 10.13287/j.1001-9332. 201809.011 |
|
[25] |
NI C, NIGH G D. An analysis and comparison of predictors of random parameters demonstrated on planted loblolly pine diameter growth prediction[J]. Forestry, 2012, 85(2): 271-280. DOI: 10.1093/forestry/cps001.
doi: 10.1093/forestry/cps001 |
[26] | 曾伟生, 唐守正. 立木生物量方程的优度评价和精度分析[J]. 林业科学, 2011, 47(11): 106-113. |
ZENG W S, TANG S Z. Goodness evaluation and precision analysis of tree biomass equations[J]. Sci Silvae Sin, 2011, 47(11): 106-113. | |
[27] |
KOZAK A, KOZAK R. Does cross validation provide additional information in the evaluation of regression models?[J]. Can J For Res, 2003, 33(6): 976-987. DOI: 10.1139/x03-022.
doi: 10.1139/x03-022 |
[28] |
DONG L H, ZHANG L J, LI F R. A compatible system of biomass equations for three conifer species in northeast, China[J]. For Ecol Manag, 2014, 329: 306-317. DOI: 10.1016/j.foreco.2014.05.050.
doi: 10.1016/j.foreco.2014.05.050 |
[29] | 董利虎, 李凤日. 大兴安岭东部主要林分类型乔木层生物量估算模型[J]. 应用生态学报, 2018, 29(9): 2825-2834. |
DONG L H, LI F R. Stand-level biomass estimation models for the tree layer of main forest types in east Daxing’an Mountains, China[J]. Chin J Appl Ecol, 2018, 29(9): 2825-2834. DOI: 10.13287/j.1001-9332.201809.014.
doi: 10.13287/j.1001-9332.201809.014 |
|
[30] |
YANG Y Q, HUANG S, TRINCADO G, et al. Nonlinear mixed-effects modeling of variable: exponent taper equations for lodgepole pine in Alberta, Canada[J]. Eur J For Res, 2009, 128(4): 415-429. DOI: 10.1007/s10342-009-0286-2.
doi: 10.1007/s10342-009-0286-2 |
[31] |
VALENTINE H T, GREGOIRE T G. A switching model of Bole taper[J]. Can J For Res, 2001, 31(8): 1400-1409. DOI: 10.1139/x01-061.
doi: 10.1139/x01-061 |
[32] |
RAMAZAN O, BAL C. Effects of adding crown variables in stem taper and volume predictions for black pine[J]. Turkish J Agric For, 2013, 37(2): 231-242. DOI: 10.3906/tar-1206-2.
doi: 10.3906/tar-1206-2 |
[33] |
HANN D W, WALTERS D K, SCRIVANI J A. Incorporating crown ratio into prediction equations for Douglas-fir stem volume[J]. Can J For Res, 1987, 17(1): 17-22. DOI: 10.1139/x87-003.
doi: 10.1139/x87-003 |
[34] | ASHTON M S, SMITH D M, LARSON B C, et al. The practice of silviculture: Applied forest ecology[M]. London: Wiley-Blackwell, 1997. |
[35] |
MANUEL A R, CASTEDO-DORADO F, CÁMARA-OBREGÓN A, et al. Fitting and calibrating a multilevel mixed-effects stem taper model for maritime pine in NW Spain[J]. PLoS One, 2015, 10(12): e0143521. DOI: 10.1371/journal.pone.0143521.
doi: 10.1371/journal.pone.0143521 |
[36] |
SABATIA C O, BURKHART H E. On the use of upper stem diameters to localize a segmented taper equation to new trees[J]. For Sci, 2015, 61(3): 411-423. DOI: 10.5849/forsci.14-039.
doi: 10.5849/forsci.14-039 |
[37] |
MCTAGUE J P, WEISKITTEL A. Evolution, history, and use of stem taper equations: a review of their development, application, and implementation[J]. Can J For Res, 2021, 51(2): 210-235. DOI: 10.1139/cjfr-2020-0326.
doi: 10.1139/cjfr-2020-0326 |
[1] | GAO Xieyu, DONG Lihu, HAO Yuanshuo. Effects of thinning on Larix olgensis plantation stem form based on TLS [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 85-94. |
[2] | SUN Yu, LI Fengri, XIE Longfei, DONG Lihu. Construction of the stand-level biomass model of Larix olgensis plantations based on stand and topographic factors [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 129-136. |
[3] | SONG Lei, JIN Xingji, PUKKALA Timo, LI Fengri. Research on multi-objective management schedules of Larix olgensis plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 150-158. |
[4] | TANG Yiren, JIA Weiwei, WANG Fan, SUN Yuman, ZHANG Ying. Constructing a biomass model of Larix olgensis primary branches based on TLS [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 130-140. |
[5] | HE Mengying, DONG Lihu, LI Fengri. Tree crown length prediction models for Larix olgensis and Fraxinus mandshurica in mixed plantations with different mixing methods [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 13-22. |
[6] | XIN Shidong, HEI Pei, JIANG Lichun. Effects of different calibration positions on prediction precision of quantile taper function for Larix gmelinii [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(1): 182-188. |
[7] | HE Pei, XIA Wanqi, JIANG Lichun. Stem taper modeling equation for dahurian larch based on nonparametric regression methods [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 184-192. |
[8] | GAO Huilin, DONG Lihu, LI Fengri. Modelling outer crown profile for planted Pinus koraiensis and Larix olgensis trees in Heilongjiang Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(03): 10-18. |
[9] | PANG Lifeng,JIA Hongyan,LU Yuanchang,FU Liyong. Equations describing stem profiles for several precious tropical tree species [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(05): 93-98. |
[10] | LIANG Ziyu,SUN Yuan,LIANG Xinlian,LI Weizheng,XU Jian. The extraction of stem taper equation based on terrestrial laser scanning [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(05): 6-10. |
[11] | SUN Yuan, SHE Guang-hui*. The Construction of Outturn Table Based on Both DBH and Height Measurement for Poplar in Jiangsu [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2006, 30(04): 47-50. |
[12] | Yan Ruohai (Institute of Central South China of Forest Inventory & Ministry of Forestry)Wu Fuzhen. A STUDY ON THE VARIABLE MERCHANTABLE VOLUME ESTIMATION SYSTEM [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 1992, 16(03): 31-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||