JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (3): 65-73.doi: 10.12302/j.issn.1000-2006.202106021
Previous Articles Next Articles
WANG Youliang1(), LIN Kaimin1,*(), SONG Chongsheng1, CUI Chaowei1, PENG Lihong1, ZHENG Hong2, ZHENG Mingming3, REN Zhengbiao1, QIU Mingjing4
Received:
2021-06-18
Accepted:
2021-10-13
Online:
2022-05-30
Published:
2022-06-10
Contact:
LIN Kaimin
E-mail:wangyouliang423@126.com;lkmyx@163.com
CLC Number:
WANG Youliang, LIN Kaimin, SONG Chongsheng, CUI Chaowei, PENG Lihong, ZHENG Hong, ZHENG Mingming, REN Zhengbiao, QIU Mingjing. Short-term effects of thinning on carbon storage in Chinese fir plantation ecosystems[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 65-73.
Table 1
Basic information of sample plots"
间伐处理 thinning treatment | 间伐强度/% thinning intensity | 间伐前 before thinning | 间伐后 after thinning | 伐后林分密度/ (株·hm-2) thinning retention forest density | |||
---|---|---|---|---|---|---|---|
平均胸径/cm average DBH | 平均树高/m average height | 平均胸径/cm average DBH | 平均树高/m average height | 单株材积/m3 individual volume | |||
LIT | 31 | 11.79±0.31 | 11.32±0.14 | 13.09±0.47 | 11.89±0.18 | 0.09±0.00 | 2 250 |
MIT | 45 | 11.79±0.61 | 11.34±0.28 | 13.47±0.47 | 12.04±0.09 | 0.09±0.01 | 1 800 |
HIT | 63 | 11.16±0.40 | 11.06±0.17 | 13.84±0.73 | 12.20±0.36 | 0.10±0.01 | 1 200 |
Table 2
Soil physical and chemical properties of experimental forest land"
间伐处理 thinning treatment | 土壤pH soil pH | 有机碳含量/ (g·kg-1) organic carbon content | 全氮含量/ (g·kg-1) total nitrogen content | 全磷含量/ (g·kg-1) total phosphorus content | 全钾含量/ (g·kg-1) total potassium content | 速效钾含量/ (mg·kg-1) available potassium content | 有效磷含量/ (mg·kg-1) available phosphorus content |
---|---|---|---|---|---|---|---|
LIT | 4.97±0.19 | 11.81±1.64 | 0.95±0.08 | 0.42±0.04 | 11.59±2.51 | 140.06±12.02 | 2.70±0.26 |
MIT | 4.74±0.15 | 11.28±1.12 | 0.85±0.11 | 0.49±0.01 | 11.04±1.49 | 82.33±15.69 | 3.19±0.65 |
HIT | 4.64±0.05 | 8.52±0.56 | 0.88±0.15 | 0.70±0.09 | 10.52±2.02 | 74.31±17.41 | 2.63±0.05 |
Table 3
Biomass model for individual trees of Chinese fir plantations"
器官 organ | 拟合方程 fitting equation | 决定系数R2 coefficient of determination R2 | 残差平方和 sum of squared residuals |
---|---|---|---|
叶 leaf | W=0.003 9 D2.445 7 | 0.853** | 0.421 6 |
枝 branch | W=0.007 0 D2.133 5 | 0.802** | 0.460 7 |
干皮 bark | W=0.007 4(DH)1.305 6 | 0.986** | 0.027 6 |
去皮干 stem without bark | W=0.035 5(DH)1.278 2 | 0.990** | 0.018 7 |
根蔸 root head | W=0.018 3 D2.175 9 | 0.931** | 0.144 8 |
根 root | W=0.006 8 D2.308 2 | 0.817** | 0.488 7 |
Table 4
"
时间time | 间伐 处理 thinning treatment | 碳储量分配 carbon storage of different organ | 总计 total | |||||
---|---|---|---|---|---|---|---|---|
叶 leaf | 枝 branch | 干皮 bark | 去皮干 stem without bark | 根蔸 root head | 根 root | |||
2017年间伐前 before thinning in 2017 (2017年10月) | LIT | 2.88±0.14 a (5.63%) | 2.24±0.09 a (4.38%) | 7.28±0.25 a (14.24%) | 29.18±0.97 a (57.09%) | 6.63±0.27 a (12.97%) | 2.91±0.64 a (5.69%) | 51.11±2.27 a |
MIT | 3.34±0.48 a (5.54%) | 2.62±0.35 a (4.35%) | 8.55±1.05 a (14.18%) | 34.34±4.19 a (56.91%) | 7.75±1.05 a (12.48%) | 3.73±0.52 a (6.19%) | 60.34±7.64 a | |
HIT | 2.98±0.39 a (5.53%) | 2.40±0.31 a (4.45%) | 7.72±0.83 a (14.34%) | 31.04±3.29 a (57.65%) | 6.94±0.83 a (12.88%) | 2.77±0.98 a (5.14%) | 53.84±5.84 a | |
2017年间伐后 after thinning in 2017 (2017年11月) | LIT | 2.53±0.22 a (5.72%) | 1.94±0.15 a (4.40%) | 6.22±0.45 a (14.09%) | 24.89±1.75 a (56.41%) | 5.75±0.46 a (13.04%) | 2.80±0.23 a (6.34%) | 44.12±3.26 a |
MIT | 2.16±0.34 b (5.86%) | 1.66±0.26 b (4.49%) | 5.28±0.81 b (14.30%) | 21.13±3.25 b (57.20%) | 4.32±1.17 b (11.68%) | 2.39±0.37 b (6.47%) | 36.93±5.82 b | |
HIT | 1.53±0.29 c (5.88%) | 1.05±0.23 c (4.03%) | 3.67±0.62 c (14.09%) | 14.66±2.46 c (56.31%) | 3.44±0.62 c (13.22%) | 1.68±0.31 c (6.46%) | 26.04±4.47 c | |
2018年11月 | LIT | 3.03±0.24 a (5.93%) | 2.28±0.17 a (4.45%) | 7.16±0.47 a (14.00%) | 28.56±1.86 a (55.87%) | 6.77±0.49 a (13.25%) | 3.32±0.26 a (6.50%) | 51.11±3.48 a |
MIT | 2.63±0.42 b (5.99%) | 1.96±0.31 b (4.47%) | 6.13±0.95 b (13.97%) | 24.46±3.77 b (55.71%) | 5.84±0.91 b (13.30%) | 2.87±0.45 b (6.55%) | 43.89±6.80 b | |
HIT | 1.92±0.35 c (6.11%) | 1.41±0.24 c (4.50%) | 4.36±0.72 c (13.91%) | 17.39±2.84 c (55.42%) | 4.21±0.74 c (13.42%) | 2.08±0.37 c (6.64%) | 31.37±5.26 c | |
2019年11月 | LIT | 3.57±0.27 a (6.12%) | 2.63±0.18 a (4.51%) | 8.12±0.50 a (13.91%) | 32.32±1.97 a (55.38%) | 7.84±0.54 a (13.43%) | 3.88±0.28 a (6.65%) | 58.37±3.72 a |
MIT | 3.15±0.50 b (6.20%) | 2.3±0.36 b (4.53%) | 7.04±1.08 b (13.87%) | 27.99±4.30 b (55.17%) | 6.86±1.07 b (13.51%) | 3.41±0.54 b (6.71%) | 50.74±7.83 b | |
HIT | 2.37±0.42 c (6.36%) | 1.70±0.28 c (4.57%) | 5.14±0.82 c (13.80%) | 20.40±3.23 c (54.78%) | 5.09±0.85 c (13.66%) | 2.54±0.44 c (6.83%) | 37.25±6.03c | |
2020年11月 | LIT | 4.17±0.29 a (6.31%) | 3.01±0.19 a (4.55%) | 9.15±0.54 a (13.83%) | 36.33±2.11 a (54.91%) | 9.00±0.58 a (13.61%) | 4.50±0.30 a (6.79%) | 66.16±4.01a |
MIT | 3.78±0.60 a (6.43%) | 2.70±0.42 a (4.59%) | 8.09±1.25a b (13.77%) | 32.09±4.96a b (54.60%) | 8.07±1.26 a (13.72%) | 4.05±0.64 a (6.89%) | 58.78±9.12a | |
HIT | 3.02±0.59 b (6.08%) | 2.02±0.46 b (4.07%) | 6.96±1.49 b (14.00%) | 27.74±5.97 b (55.79%) | 6.68±1.34 b (13.43%) | 3.3±0.65 b (6.63%) | 49.71±10.30b |
Table 5
"
间伐处理 thinning | 灌木层碳含量 shrub layer carbon content | 草本层碳含量 herb layercarbon content | 凋落物层碳含量 litter mass carbon content | |||
---|---|---|---|---|---|---|
枝branch | 叶leaf | 根root | 地上aboveground | 地下underground | ||
LIT | 383.17±27.99 b | 397.76±25.98 b | 372.84±25.15 b | 397.30±22.57 b | 430.93±27.42 b | 458.64±23.48 a |
MIT | 436.12±27.13 ab | 453.68±23.10 a | 442.32±18.71 a | 469.93±27.82 a | 487.71±18.80 a | 455.21±21.01 a |
HIT | 458.80±17.71 a | 430.76±21.05 a | 418.39±26.85 ab | 463.22±13.00 a | 410.19±19.14 b | 440.91±24.32 a |
Table 6
Carbon storages of understory vegetation and litter in Chinese fir plantations with different thinning treatments"
间伐处理 thinning | 灌木层碳储量 shrub layer carbon storage | 草本层碳储量 herb layer carbon storage | 凋落物层碳储量 litter mass carbon storage | |||||
---|---|---|---|---|---|---|---|---|
枝 branch | 叶 leaf | 根 root | 合计 total | 地上 above ground | 地下 underground | 合计 total | ||
LIT | 19.38±8.86 b (39.30%) | 12.09±3.87 b (24.52%) | 17.84±7.59 b (36.18%) | 49.31± 18.60 a | 19.28±5.74 b (79.37%) | 5.01±2.47 a (20.87%) | 24.29± 6.32 b | 7 508.70±500.69 a |
MIT | 78.84±15.72 a (40.49%) | 52.86±15.00 a (27.15%) | 63.01±19.40 a (32.36%) | 194.71± 37.26 b | 32.62±7.25 b (83.19%) | 6.59±3.55 ab (16.81%) | 39.21± 7.11 b | 4 662.44±528.61 a |
HIT | 101.97±12.99 a (44.66%) | 57.40±17.20 a (25.14%) | 68.96±22.70 a (30.20%) | 228.34± 74.79 b | 73.58±16.67 a (89.92%) | 8.25±2.14 a (10.81%) | 81.83± 46.26 a | 4 442.81±344.85 a |
Fig.1
Soil organic carbon contents and carbon storages in Chinese fir plantations with different thinning treatments Different lowercase letters indicated significant differences among different treatments in the same soil layer (P<0.05), different uppercase letters indicated significant differences among different soil layers in the same treatment (P<0.05)."
Table 7
The carbon storage of Chinese fir plantations ecosystems with different thinning treatments"
间伐处理 thinning | 乔木层 tree layer | 灌木层 shrub layer | 草本层 herb layer | 凋落物层 litter mass | 土壤层 soil layer | 合计 total |
---|---|---|---|---|---|---|
LIT | 66.16±4.01 a (38.06%) | 0.05±0.02 b (0.03%) | 0.02±0.00 b (0.01%) | 7.51±5.00 a (4.32%) | 100.02±19.25 a (57.53%) | 173.85±22.99 a |
MIT | 58.77±9.12 a (36.13%) | 0.19±0.04 a (0.12%) | 0.04±0.01 b (0.02%) | 4.66±5.29 b (2.89%) | 98.99±11.62 a (61.44%) | 161.12±14.07 a |
HIT | 49.71±10.30 b (40.84%) | 0.23±0.05 a (0.19%) | 0.82±0.05 a (0.67%) | 4.44±3.44 a (3.65%) | 67.30±8.95 b (55.29%) | 121.73±15.42 b |
[1] | 陈雅如, 赵金成. 碳达峰、碳中和目标下全球气候治理新格局与林草发展机遇[J]. 世界林业研究, 34(6):1-5. |
CHEN Y R, ZHAO J C. New pattern of global climate governance and opportunities for forest and grassland development under the target of carbon emission peaked and carbon neutral[J]. World For Res, 2021, 34(5):1-6. DOI: 10.13348/j.cnki.sjlyyj.2021.0065.
doi: 10.13348/j.cnki.sjlyyj.2021.0065 |
|
[2] |
JANDL R, LINDNER M, VESTERDAL L, et al. How strongly can forest management influence soil carbon sequestration?[J]. Geoderma, 2007, 137(3/4):253-268.DOI: 10.1016/j.geoderma.2006.09.003.
doi: 10.1016/j.geoderma.2006.09.003 |
[3] |
VALENTINI R, MATTEUCCI G, DOLMAN A J, et al. Respiration as the main determinant of carbon balance in European forests[J]. Nature, 2000, 404(6780):861-865.DOI: 10.1038/35009084.
doi: 10.1038/35009084 |
[4] |
PAN Y, BIRDSEY R A, FANG J, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045):988-993.DOI: 10.1126/science.1201609.
doi: 10.1126/science.1201609 |
[5] |
LI S Y, LI S G, HUANG M. Effects of thinning intensity on carbon stocks and changes in larch forests in China northeast forest region[J]. J Resour Ecol, 2017, 8(5):538-544.DOI: 10.5814/j.issn.1674-764x.2017.05.011.
doi: 10.5814/j.issn.1674-764x.2017.05.011 |
[6] |
SIX J, CALLEWAERT P, LENDERS S, et al. Measuring and understanding carbon storage in afforested soils by physical fractionation[J]. Soil Sci Soc Am J, 2002, 66(6):1981-1987.DOI: 10.2136/sssaj2002.1981.
doi: 10.2136/sssaj2002.1981 |
[7] |
LI D, NIU S, LUO Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation:a meta-analysis[J]. New Phytol, 2012, 195(1):172-181.DOI: 10.1111/j.1469-8137.2012.04150.x.
doi: 10.1111/j.1469-8137.2012.04150.x. |
[8] |
HU Z H, HE Z M, HUANG Z Q, et al. Effects of harvest residue management on soil carbon and nitrogen processes in a Chinese fir plantation[J]. For Ecol Manag, 2014, 326:163-170.DOI: 10.1016/j.foreco.2014.04.023.
doi: 10.1016/j.foreco.2014.04.023 |
[9] |
THÜRIG E, KAUFMANN E. Increasing carbon sinks through forest management:a model-based comparison for Switzerland with its Eastern Plateau and Eastern Alps[J]. Eur J For Res, 2010, 129(4):563-572.DOI: 10.1007/s10342-010-0354-7.
doi: 10.1007/s10342-010-0354-7 |
[10] | 王祖华, 刘红梅, 王晓杰, 等. 经营措施对森林生态系统碳储量影响的研究进展[J]. 西北农林科技大学学报(自然科学版), 2011, 39(1):83-88. |
WANG Z H, LIU H M, WANG X J, et al. Progress of management on carbon storage of forest ecosystems[J]. J Northwest A F Univ (Nat Sci Ed),2011, 39(1):83-88.DOI: 10.13207/j.cnki.jnwafu.2011.01.030.
doi: 10.13207/j.cnki.jnwafu.2011.01.030 |
|
[11] | 高云昌, 张文辉, 何景峰, 等. 黄龙山油松人工林间伐效果的综合评价[J]. 应用生态学报, 2013, 24(5):1313-1319. |
GAO Y C, ZHANG W H, HE J F, et al. Effects of thinning intensity on Pinus tabulaeformis plantation in Huanglong Mountain,Northwest China:a comprehensive evaluation[J]. Chin J Appl Ecol, 2013, 24(5):1313-1319.DOI: 10.13287/j.1001-9332.2013.0293.
doi: 10.13287/j.1001-9332.2013.0293 |
|
[12] |
MALMSHEIMER R W, BOWYER J L, FRIED J S, et al. Managing forests because carbon matters: integrating energy, products, and land management policy[J]. J Forest, 2011, 109(7S): S7-S50. DOI: 10.1139/X11-123.
doi: 10.1139/X11-123 |
[13] | 刘慧, 董希斌, 曲杭峰, 等. 抚育间伐对小兴安岭天然针阔混交林碳储量的影响[J]. 东北林业大学学报, 2021, 49(2):31-35. |
LIU H, DONG X B, QU H F, et al. Effects of tending and thinning on partial above-ground carbon storage of natural coniferous and broad-leaved mixed forest in Xiaoxing’an Mountains[J]. J Northeast For Univ, 2021, 49(2):31-35.DOI: 10.13759/j.cnki.dlxb.2021.02.006.
doi: 10.13759/j.cnki.dlxb.2021.02.006 |
|
[14] |
TAKI H, INOUE T, TANAKA H, et al. Responses of community structure,diversity,and abundance of understory plants and insect assemblages to thinning in plantations[J]. For Ecol Manag, 2010, 259(3):607-613.DOI: 10.1016/j.foreco.2009.11.019.
doi: 10.1016/j.foreco.2009.11.019 |
[15] | 梁晶. 间伐对长白山林区典型林分类型土壤碳储量的影响[D]. 哈尔滨: 东北林业大学, 2015. |
LIANG J. The influence of thinning intensity on soil carbon storage in typical forest stands in Changbai Mountain[D]. Harbin: Northeast Forestry University, 2015.DOI: 10.27009/d.cnki.gdblu.2015.000018.
doi: 10.27009/d.cnki.gdblu.2015.000018 |
|
[16] | 郑鸣鸣, 任正标, 王友良, 等. 间伐强度对杉木中龄林生长和结构的影响[J]. 森林与环境学报, 2020, 40(4):369-376. |
ZHENG M M, REN Z B, WANG Y L, et al. Effect of thinning intensity on the growth and structure of a middle-aged Chinese fir forest[J]. J For Environ, 2020, 40(4):369-376.DOI: 10.13324/j.cnki.jfcf.2020.04.005.
doi: 10.13324/j.cnki.jfcf.2020.04.005 |
|
[17] | 李燕, 张建国, 段爱国, 等. 杉木人工林生物量估算模型的选择[J]. 应用生态学报, 2010, 21(12):3036-3046. |
LI Y, ZHANG J G, DUAN A G, et al. Selection of biomass estimation models for Chinese fir plantation[J]. Chin J Appl Ecol, 2010, 21(12):3036-3046.DOI: 10.13287/j.1001-9332.2010.0430.
doi: 10.13287/j.1001-9332.2010.0430 |
|
[18] | 彭舜磊, 王华太, 陈昌东, 等. 宝天曼自然保护区森林土壤碳氮储量分布格局分析[J]. 水土保持研究, 2015, 22(5):30-34. |
PENG S L, WANG H T, CHEN C D, et al. Distribution patterns of soil organic carbon and nitrogen storage in forestland of Baotianman Nature Reserve[J]. Res Soil Water Conserv, 2015, 22(5):30-34.DOI: 10.13869/j.cnki.rswc.2015.05.007.
doi: 10.13869/j.cnki.rswc.2015.05.007 |
|
[19] | 殷博, 董鹏飞, 党坤良. 抚育间伐对红桦林生态系统碳密度的影响[J]. 西北林学院学报, 2019, 34(1):105-112. |
YIN B, DONG P F, DANG K L. Effects of thinning on carbon density of Betula albo sinensis ecosystem[J]. J Northwest For Univ, 2019, 34(1):105-112.DOI: 10.3969/j.issn.1001-7461.2019.01.15.
doi: 10.3969/j.issn.1001-7461.2019.01.15 |
|
[20] | 董莉莉, 刘红民, 汪成成, 等. 间伐对蒙古栎次生林生态系统碳储量的短期和长期影响[J]. 沈阳农业大学学报, 2019, 50(5):614-620. |
DONG L L, LIU H M, WANG C C, et al. Short-term and long-term effects of thinning on carbon storage of Quercus mongolica secondary forests[J]. J Shenyang Agric Univ, 2019, 50(5):614-620.DOI: 10.3969/j.issn.1000-1700.2019.05.014.
doi: 10.3969/j.issn.1000-1700.2019.05.014 |
|
[21] | 徐金良, 毛玉明, 成向荣, 等. 间伐对杉木人工林碳储量的长期影响[J]. 应用生态学报, 2014, 25(7):1898-1904. |
XU J L, MAO Y M, CHENG X R, et al. Long-term effects of thinning on carbon storage in Cunninghamia lanceolata plantations[J]. Chin J Appl Ecol, 2014, 25(7):1898-1904.DOI: 10.13287/j.1001-9332.2014.0126.
doi: 10.13287/j.1001-9332.2014.0126 |
|
[22] | 武朋辉, 党坤良, 常伟, 等. 抚育间伐对秦岭南坡锐齿栎天然次生林碳密度的影响[J]. 西北农林科技大学学报(自然科学版), 2016, 44(10):75-82. |
WU P H, DANG K L, CHANG W, et al. Effects of forest thinning on carbon density of Quercus aliena var.acuteserrata natural secondary forest on southern slope of Qinling Mountains[J]. J Northwest A F Univ (Nat Sci Ed),2016, 44(10):75-82.DOI: 10.13207/j.cnki.jnwafu.2016.10.011.
doi: 10.13207/j.cnki.jnwafu.2016.10.011 |
|
[23] | 刁娇娇, 肖文娅, 费菲, 等. 间伐对杉木人工林生长及生态系统碳储量的短期影响[J]. 西南林业大学学报, 2017, 37(3):134-139. |
DIAO J J, XIAO W Y, FEI F, et al. Short effect of thinning on the growth and carbon storage of Cunninghamia lanceolata plantation[J]. J Southwest For Univ, 2017, 37(3):134-139.DOI: 10.11929/j.issn.2095-1914.2017.03.021.
doi: 10.11929/j.issn.2095-1914.2017.03.021 |
|
[24] |
SPRING D A, KENNEDY J O S, MAC NALLY R. Optimal management of a forested catchment providing timber and carbon sequestration benefits:climate change effects[J]. Glob Environ Change, 2005, 15(3):281-292.DOI: 10.1016/j.gloenvcha.2005.04.002.
doi: 10.1016/j.gloenvcha.2005.04.002 |
[25] | 游伟斌, 梁芳, 贾忠奎, 等. 抚育间伐对北京山区油松林乔木层碳储量的影响[J]. 北方园艺, 2011(23):203-206. |
YOU W B, LIANG F, JIA Z K, et al. Influence of thinning on the carbon storage of Pinus tabulaeformis arborescent stratum[J]. North Hortic, 2011(23):203-206.DOI: CNKI:SUN:BFYY.0.2011-23-081.
doi: CNKI:SUN:BFYY.0.2011-23-081 |
|
[26] | 成向荣, 虞木奎, 葛乐, 等. 不同间伐强度下麻栎人工林碳密度及其空间分布[J]. 应用生态学报, 2012, 23(5):1175-1180. |
CHENG X R, YU M K, GE L, et al. Carbon density and its spatial distribution in Quercus acutissima plantations under different thinning intensities[J]. Chin J Appl Ecol, 2012, 23(5):1175-1180.DOI: 10.13287/j.1001-9332.2012.0162.
doi: 10.13287/j.1001-9332.2012.0162 |
|
[27] | 彭文宏, 牟长城, 常怡慧, 等. 东北寒温带永久冻土区森林沼泽湿地生态系统碳储量[J]. 土壤学报, 2020, 57(6):1526-1538. |
PENG W H, MU C C, CHANG Y H, et al. Carbon storage of forested wetland ecosystems in the cold temperate permafrost region, northeast China[J]. Acta Pedologica Sinica, 2020, 57(6):1526-1538. DOI: 10.11766/trxb201910210076.
doi: 10.11766/trxb201910210076 |
|
[28] |
RUIZ-PEINADO R, BRAVO-OVIEDO A, LÓPEZ-SENESPLEDA E, et al. Do thinnings influence biomass and soil carbon stocks in Mediterranean maritime pinewoods?[J]. Eur J For Res, 2013, 132(2):253-262.DOI: 10.1007/s10342-012-0672-z.
doi: 10.1007/s10342-012-0672-z |
[29] |
NILSEN P, STRAND L T. Thinning intensity effects on carbon and nitrogen stores and fluxes in a Norway spruce [Picea abies (L.) Karst.] stand after 33 years[J]. For Ecol Manag, 2008, 256(3):201-208.DOI: 10.1016/j.foreco.2008.04.001.
doi: 10.1016/j.foreco.2008.04.001 |
[30] |
KURTH V J, D’AMATO A W, PALIK B J, et al. Fifteen-year patterns of soil carbon and nitrogen following biomass harvesting[J]. Soil Sci Soc Am J, 2014, 78(2):624-633.DOI: 10.2136/sssaj2013.08.0360.
doi: 10.2136/sssaj2013.08.0360 |
[31] | 陈心桐, 徐天乐, 李雪静, 等. 中国北方自然生态系统土壤有机碳含量及其影响因素[J]. 生态学杂志, 2019, 38(4):1133-1140. |
CHEN X T, XU T L, LI X J, et al. Soil organic carbon concentrations and the influencing factors in natural ecosystems of northern China[J]. Chin J Ecol, 2019, 38(4):1133-1140. |
[1] | LI Sirong, SU Tongxiang. Protection policy impacts on landscape pattern changes and ecosystem service value responses in Fuxian Lake basin [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 145-154. |
[2] | GAO Xieyu, DONG Lihu, HAO Yuanshuo. Effects of thinning on Larix olgensis plantation stem form based on TLS [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 85-94. |
[3] | WANG Zhangrong, JI Kongshu, XU Li’an, ZOU Bingzhang, LIN Nengqing, LIN Jingquan. New management model of construction techniques, realistic genetic gain and low cost multi-generation improvement in seedling seed orchard of Pinus massoniana [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 9-16. |
[4] | YANG Yuping, HU Wenmin, JIA Guanyu, LI Guo, LI Yi. Scenario simulation integrating the ANN-CA model with the InVEST model to investigate land-based carbon storage in the Dongting Lake area [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 175-184. |
[5] | SHEN Hao, JIANG Jiang, ZHOU Chen, PAN Qingquan. Research on factors driving carbon storage in broad-leaved forests of different origins from Shicheng, Jiangxi Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 185-190. |
[6] | QI Liping, LUAN Zhaoqing, WEI Mian, YAN Dandan, LI Jingtai, YAO Xiuying, LIU Yao, XIE Siying, SHENG Yufeng. Spatial and temporal variations of ecosystem service values in Jiangsu Province based on land-use change [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 200-208. |
[7] | ZHANG Yucheng, HAN Nianlong, HU Ke, YU Miao, LI Xingqiang. The impact of land-use changes on the spatio-temporal variation of carbon storage in the central mountainous area of Hainan Island [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 115-122. |
[8] | DONG Hanyuan, YU Ying, FAN Wenyi. Verification of performance of understory terrain inversion from spaceborne lidar GEDI data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 141-149. |
[9] | ZHAO Mingzhen, LIU Jing, ZOU Xianhua, ZHENG Hong, FAN Fujing, LIN Kaimin, MA Xiangqing, LI Ming. Effects of thinning and fertilization on the growth and timber assortment structure of middle-aged Chinese fir forest [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 70-78. |
[10] | LI Wei, LI Jiping, ZHANG Yinlong, LI Pingping, HAN Jiangang. Ecological restoration technologies for lake wetlands for carbon peaking and neutrality [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 157-166. |
[11] | WANG Dawei, SHEN Wenxing. The carbon storage calaulation and carbon sequestration potential analysis of the main artificial arboreal forest in China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 11-19. |
[12] | LEI Haiqing, SUN Gaoqiu, ZHENG Deli. Carbon storage of forest ecosystem in Wenzhou City, Zhejiang Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 20-26. |
[13] | XIAO Jun. Dynamic changes in carbon storage and strategies to increase carbon sink of natural arbor forests in Fujian Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 27-32. |
[14] | JIA Yanyan, TANG Xiaolan, REN Yujie. Spatial-temporal evolution and correlation analyses of ecosystem service values and landscape ecological risks in Anhui section of the Yangtze River basin [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 31-40. |
[15] | XIE Junyi, XU Xia, CAI Bin, ZHANG Huiguang. Responses of forest soil labile nitrogen pool and nitrogen cycle to the changes of carbon input under “carbon neutrality” [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 1-11. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||