Short-term effects of thinning on carbon storage in Chinese fir plantation ecosystems

WANG Youliang, LIN Kaimin, SONG Chongsheng, CUI Chaowei, PENG Lihong, ZHENG Hong, ZHENG Mingming, REN Zhengbiao, QIU Mingjing

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (3) : 65-73.

PDF(1547 KB)
PDF(1547 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (3) : 65-73. DOI: 10.12302/j.issn.1000-2006.202106021

Short-term effects of thinning on carbon storage in Chinese fir plantation ecosystems

Author information +
History +

Abstract

【Objective】 Thinning is an important management measure in plantation forest management, which can change the growth environment and affect the growth, productivity and carbon storage of the forest stands. As an important tree species for afforestation in southern China, Chinese fir occupies an indispensable position in forestry production. Therefore, studying the short-term impact of different thinning intensities on carbon storage in Chinese fir plantations helps to optimize forest management measures, and accurately evaluate the short-term effects of thinning on the biomass and carbon storage, which is important in the development of carbon sink forestry, and can provide a basis for improving carbon sink capacity.【Method】 The 11-year-old Chinese fir plantations in Guanzhuang State Forest Farm in Sanming City, Fujian Province, with consistent slopes, slope positions and soil conditions were selected for research. The experiment was designed according to a random block design with three levels of thinning intensity with light thinning (31%, LIT, 2 250 plants/hm2 in post-cutting stand), moderately intensive thinning (45%, MIT, 1 800 plants/hm2 in post-cutting stand),and highly intensive thinning (63%, HIT, 1 200 plants/hm2 in post-cutting stand). A total of nine 20 m×20 m sample plots were set up, and soils from different soil layers in a 1 m section were collected. In the sample plot, the biomass of the tree layer was estimated using the biomass regression equation, and the biomass of the understory vegetation and litter were measured. The carbon content of the vegetation and soil was measured using an element analyzer, and the carbon storage was estimated based on the carbon content. The carbon storage and distribution pattern of each component in the ecosystem were examined after three thinning treatments. The carbon storage of each component of the ecosystem during the growth of the Chinese fir after three thinning treatments was analyzed to evaluate the effects of thinning on the carbon storage of the Chinese fir plantation.【Result】 Three years after thinning, the carbon storage of the tree layer and the soil layer decreased with the increase in thinning intensity. The carbon storage of the tree layer for the LIT, MIT, and HIT plots was 66.16, 58.77, and 49.71 t/hm2, respectively. The carbon storage of the shrub layer and herb layer significantly increased with the increase in thinning intensity, accounting for 0.03%-0.19% and 0.01%-0.67% of the carbon storage of the ecosystem, respectively. There was no significant effect on the carbon storage of the litter layer, and the litter layer carbon storage accounted for 2.87%-4.32% of the ecosystem carbon storage. The soil carbon storage decreased with the increase in thinning intensity, and the soil organic carbon storage was significantly different between different thinning treatments (P < 0.05). The soil carbon storage from the HIT treatment reduced 32.07% and 1.03% compared with LIT and MIT treatments. Three years after thinning, the carbon storage significantly decreased with the increase in thinning intensity (P < 0.05). The total carbon storage of the LIT, MIT and HIT plots was 173.85, 161.12 and 121.73 t/hm2, with the sum of the carbon storage of the tree layer and soil layer accounting for more than 90.00%. It indicates that the tree layer and soil layer are huge carbon pools, and thinning will reduce the total carbon storage in short-term in the ecosystem.【Conclusion】The carbon storage of the arbor, litter layer and soil layer in the Chinese fir plantation short-term decreased with the increase in thinning intensity after thinning, while the carbon storage of the shrub and herb layer increased with the increase in thinning intensity, indicating that the intensity of thinning increased after three years, and that the experimental forest land is still in the recovery period. The research revealed that thinning of Chinese fir plantations will reduce the total carbon storage of the ecosystem in short-term, provide a scientific basis for the carbon sink and sustainable management of plantations in the study area.

Key words

thinning / Chinese fir plantations / ecosystem / carbon storage / carbon allocation

Cite this article

Download Citations
WANG Youliang , LIN Kaimin , SONG Chongsheng , et al . Short-term effects of thinning on carbon storage in Chinese fir plantation ecosystems[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(3): 65-73 https://doi.org/10.12302/j.issn.1000-2006.202106021

References

[1]
陈雅如, 赵金成. 碳达峰、碳中和目标下全球气候治理新格局与林草发展机遇[J]. 世界林业研究, 34(6):1-5.
CHEN Y R, ZHAO J C. New pattern of global climate governance and opportunities for forest and grassland development under the target of carbon emission peaked and carbon neutral[J]. World For Res, 2021, 34(5):1-6. DOI: 10.13348/j.cnki.sjlyyj.2021.0065.
[2]
JANDL R, LINDNER M, VESTERDAL L, et al. How strongly can forest management influence soil carbon sequestration?[J]. Geoderma, 2007, 137(3/4):253-268.DOI: 10.1016/j.geoderma.2006.09.003.
[3]
VALENTINI R, MATTEUCCI G, DOLMAN A J, et al. Respiration as the main determinant of carbon balance in European forests[J]. Nature, 2000, 404(6780):861-865.DOI: 10.1038/35009084.
[4]
PAN Y, BIRDSEY R A, FANG J, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045):988-993.DOI: 10.1126/science.1201609.
[5]
LI S Y, LI S G, HUANG M. Effects of thinning intensity on carbon stocks and changes in larch forests in China northeast forest region[J]. J Resour Ecol, 2017, 8(5):538-544.DOI: 10.5814/j.issn.1674-764x.2017.05.011.
Thinning represents an important and frequently used silvicultural technique that improves forest wood products and has obvious effects on forest carbon stocks and stock changes. Here, we used the carbon budget model CBM-CFS3 to simulate the effects of thinning on carbon storage and changes in larch forest ecosystems under thirteen thinning scenarios. Simulation results demonstrate that strong thinning greatly reduces the biomass carbon density of larch forests compared to non-thinning forests. The minimum and maximum average biomass carbon density, respectively, were 30.3 tC ha<sup>-1</sup> and 47.8 tC ha<sup>-1</sup>, a difference of 58% under set scenarios in the simulated time scale. The dead organic matter (including soil) carbon density increased in all thinned larch forests stands, compared with non-thinning stands, and the pattern of variation was opposite to that found for biomass carbon density. However, the total ecosystem carbon density of larch forests declined with thinning because the increase in dead organic matter carbon is insufficient to offset the loss of biomass carbon caused by thinning. Thus, strong thinning can transform larch forest ecosystems from carbon sinks into carbon sources. Future work should consider the carbon sequestered in wood materials acquired via thinning and their use as substitutes for other construction materials with less favorable lifecycle carbon footprints, such as steel, cement, aluminum and PVC.
[6]
SIX J, CALLEWAERT P, LENDERS S, et al. Measuring and understanding carbon storage in afforested soils by physical fractionation[J]. Soil Sci Soc Am J, 2002, 66(6):1981-1987.DOI: 10.2136/sssaj2002.1981.
[7]
LI D, NIU S, LUO Y. Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation:a meta-analysis[J]. New Phytol, 2012, 195(1):172-181.DOI: 10.1111/j.1469-8137.2012.04150.x.
[8]
HU Z H, HE Z M, HUANG Z Q, et al. Effects of harvest residue management on soil carbon and nitrogen processes in a Chinese fir plantation[J]. For Ecol Manag, 2014, 326:163-170.DOI: 10.1016/j.foreco.2014.04.023.
[9]
THÜRIG E, KAUFMANN E. Increasing carbon sinks through forest management:a model-based comparison for Switzerland with its Eastern Plateau and Eastern Alps[J]. Eur J For Res, 2010, 129(4):563-572.DOI: 10.1007/s10342-010-0354-7.
[10]
王祖华, 刘红梅, 王晓杰, 等. 经营措施对森林生态系统碳储量影响的研究进展[J]. 西北农林科技大学学报(自然科学版), 2011, 39(1):83-88.
WANG Z H, LIU H M, WANG X J, et al. Progress of management on carbon storage of forest ecosystems[J]. J Northwest A F Univ (Nat Sci Ed),2011, 39(1):83-88.DOI: 10.13207/j.cnki.jnwafu.2011.01.030.
[11]
高云昌, 张文辉, 何景峰, 等. 黄龙山油松人工林间伐效果的综合评价[J]. 应用生态学报, 2013, 24(5):1313-1319.
GAO Y C, ZHANG W H, HE J F, et al. Effects of thinning intensity on Pinus tabulaeformis plantation in Huanglong Mountain,Northwest China:a comprehensive evaluation[J]. Chin J Appl Ecol, 2013, 24(5):1313-1319.DOI: 10.13287/j.1001-9332.2013.0293.
[12]
MALMSHEIMER R W, BOWYER J L, FRIED J S, et al. Managing forests because carbon matters: integrating energy, products, and land management policy[J]. J Forest, 2011, 109(7S): S7-S50. DOI: 10.1139/X11-123.
[13]
刘慧, 董希斌, 曲杭峰, 等. 抚育间伐对小兴安岭天然针阔混交林碳储量的影响[J]. 东北林业大学学报, 2021, 49(2):31-35.
LIU H, DONG X B, QU H F, et al. Effects of tending and thinning on partial above-ground carbon storage of natural coniferous and broad-leaved mixed forest in Xiaoxing’an Mountains[J]. J Northeast For Univ, 2021, 49(2):31-35.DOI: 10.13759/j.cnki.dlxb.2021.02.006.
[14]
TAKI H, INOUE T, TANAKA H, et al. Responses of community structure,diversity,and abundance of understory plants and insect assemblages to thinning in plantations[J]. For Ecol Manag, 2010, 259(3):607-613.DOI: 10.1016/j.foreco.2009.11.019.
[15]
梁晶. 间伐对长白山林区典型林分类型土壤碳储量的影响[D]. 哈尔滨: 东北林业大学, 2015.
LIANG J. The influence of thinning intensity on soil carbon storage in typical forest stands in Changbai Mountain[D]. Harbin: Northeast Forestry University, 2015.DOI: 10.27009/d.cnki.gdblu.2015.000018.
[16]
郑鸣鸣, 任正标, 王友良, 等. 间伐强度对杉木中龄林生长和结构的影响[J]. 森林与环境学报, 2020, 40(4):369-376.
ZHENG M M, REN Z B, WANG Y L, et al. Effect of thinning intensity on the growth and structure of a middle-aged Chinese fir forest[J]. J For Environ, 2020, 40(4):369-376.DOI: 10.13324/j.cnki.jfcf.2020.04.005.
[17]
李燕, 张建国, 段爱国, 等. 杉木人工林生物量估算模型的选择[J]. 应用生态学报, 2010, 21(12):3036-3046.
LI Y, ZHANG J G, DUAN A G, et al. Selection of biomass estimation models for Chinese fir plantation[J]. Chin J Appl Ecol, 2010, 21(12):3036-3046.DOI: 10.13287/j.1001-9332.2010.0430.
[18]
彭舜磊, 王华太, 陈昌东, 等. 宝天曼自然保护区森林土壤碳氮储量分布格局分析[J]. 水土保持研究, 2015, 22(5):30-34.
PENG S L, WANG H T, CHEN C D, et al. Distribution patterns of soil organic carbon and nitrogen storage in forestland of Baotianman Nature Reserve[J]. Res Soil Water Conserv, 2015, 22(5):30-34.DOI: 10.13869/j.cnki.rswc.2015.05.007.
[19]
殷博, 董鹏飞, 党坤良. 抚育间伐对红桦林生态系统碳密度的影响[J]. 西北林学院学报, 2019, 34(1):105-112.
YIN B, DONG P F, DANG K L. Effects of thinning on carbon density of Betula albo sinensis ecosystem[J]. J Northwest For Univ, 2019, 34(1):105-112.DOI: 10.3969/j.issn.1001-7461.2019.01.15.
[20]
董莉莉, 刘红民, 汪成成, 等. 间伐对蒙古栎次生林生态系统碳储量的短期和长期影响[J]. 沈阳农业大学学报, 2019, 50(5):614-620.
DONG L L, LIU H M, WANG C C, et al. Short-term and long-term effects of thinning on carbon storage of Quercus mongolica secondary forests[J]. J Shenyang Agric Univ, 2019, 50(5):614-620.DOI: 10.3969/j.issn.1000-1700.2019.05.014.
[21]
徐金良, 毛玉明, 成向荣, 等. 间伐对杉木人工林碳储量的长期影响[J]. 应用生态学报, 2014, 25(7):1898-1904.
XU J L, MAO Y M, CHENG X R, et al. Long-term effects of thinning on carbon storage in Cunninghamia lanceolata plantations[J]. Chin J Appl Ecol, 2014, 25(7):1898-1904.DOI: 10.13287/j.1001-9332.2014.0126.
[22]
武朋辉, 党坤良, 常伟, 等. 抚育间伐对秦岭南坡锐齿栎天然次生林碳密度的影响[J]. 西北农林科技大学学报(自然科学版), 2016, 44(10):75-82.
WU P H, DANG K L, CHANG W, et al. Effects of forest thinning on carbon density of Quercus aliena var.acuteserrata natural secondary forest on southern slope of Qinling Mountains[J]. J Northwest A F Univ (Nat Sci Ed),2016, 44(10):75-82.DOI: 10.13207/j.cnki.jnwafu.2016.10.011.
[23]
刁娇娇, 肖文娅, 费菲, 等. 间伐对杉木人工林生长及生态系统碳储量的短期影响[J]. 西南林业大学学报, 2017, 37(3):134-139.
DIAO J J, XIAO W Y, FEI F, et al. Short effect of thinning on the growth and carbon storage of Cunninghamia lanceolata plantation[J]. J Southwest For Univ, 2017, 37(3):134-139.DOI: 10.11929/j.issn.2095-1914.2017.03.021.
[24]
SPRING D A, KENNEDY J O S, MAC NALLY R. Optimal management of a forested catchment providing timber and carbon sequestration benefits:climate change effects[J]. Glob Environ Change, 2005, 15(3):281-292.DOI: 10.1016/j.gloenvcha.2005.04.002.
[25]
游伟斌, 梁芳, 贾忠奎, 等. 抚育间伐对北京山区油松林乔木层碳储量的影响[J]. 北方园艺, 2011(23):203-206.
YOU W B, LIANG F, JIA Z K, et al. Influence of thinning on the carbon storage of Pinus tabulaeformis arborescent stratum[J]. North Hortic, 2011(23):203-206.DOI: CNKI:SUN:BFYY.0.2011-23-081.
[26]
成向荣, 虞木奎, 葛乐, 等. 不同间伐强度下麻栎人工林碳密度及其空间分布[J]. 应用生态学报, 2012, 23(5):1175-1180.
CHENG X R, YU M K, GE L, et al. Carbon density and its spatial distribution in Quercus acutissima plantations under different thinning intensities[J]. Chin J Appl Ecol, 2012, 23(5):1175-1180.DOI: 10.13287/j.1001-9332.2012.0162.
[27]
彭文宏, 牟长城, 常怡慧, 等. 东北寒温带永久冻土区森林沼泽湿地生态系统碳储量[J]. 土壤学报, 2020, 57(6):1526-1538.
PENG W H, MU C C, CHANG Y H, et al. Carbon storage of forested wetland ecosystems in the cold temperate permafrost region, northeast China[J]. Acta Pedologica Sinica, 2020, 57(6):1526-1538. DOI: 10.11766/trxb201910210076.
[28]
RUIZ-PEINADO R, BRAVO-OVIEDO A, LÓPEZ-SENESPLEDA E, et al. Do thinnings influence biomass and soil carbon stocks in Mediterranean maritime pinewoods?[J]. Eur J For Res, 2013, 132(2):253-262.DOI: 10.1007/s10342-012-0672-z.
[29]
NILSEN P, STRAND L T. Thinning intensity effects on carbon and nitrogen stores and fluxes in a Norway spruce [Picea abies (L.) Karst.] stand after 33 years[J]. For Ecol Manag, 2008, 256(3):201-208.DOI: 10.1016/j.foreco.2008.04.001.
[30]
KURTH V J, D’AMATO A W, PALIK B J, et al. Fifteen-year patterns of soil carbon and nitrogen following biomass harvesting[J]. Soil Sci Soc Am J, 2014, 78(2):624-633.DOI: 10.2136/sssaj2013.08.0360.
[31]
陈心桐, 徐天乐, 李雪静, 等. 中国北方自然生态系统土壤有机碳含量及其影响因素[J]. 生态学杂志, 2019, 38(4):1133-1140.
CHEN X T, XU T L, LI X J, et al. Soil organic carbon concentrations and the influencing factors in natural ecosystems of northern China[J]. Chin J Ecol, 2019, 38(4):1133-1140.
PDF(1547 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/