JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (5): 177-184.doi: 10.12302/j.issn.1000-2006.202108018
Previous Articles Next Articles
ZHAO Kaige(), ZHOU Zhenghu(), JIN Ying, WANG Chuankuan
Received:
2021-08-29
Revised:
2022-01-29
Online:
2022-09-30
Published:
2022-10-19
Contact:
ZHOU Zhenghu
E-mail:522651068@qq.com;zzhou@nefu.edu.cn
CLC Number:
ZHAO Kaige, ZHOU Zhenghu, JIN Ying, WANG Chuankuan. Effects of long-term nitrogen addition on soil carbon, nitrogen, phosphorus and extracellular enzymes in Larix gmelinii and Fraxinus mandshurica plantations[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 177-184.
Table 1
Comparisons of soil C, N, P fractions between Fraxinus mandshurica and Larix gmelinii plantations"
树种 tree species | 含量content | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
总有机碳/ (g·kg-1) TOC | 溶解性 有机碳/ (mg·kg-1) DOC | 活性 碳库Ⅰ/ (g·kg-1) LPⅠ-C | 活性 碳库Ⅱ/ (g·kg-1) LPⅡ-C | 惰性碳库/ (g·kg-1) RP-C | 全氮/ (g·kg-1) TN | 溶解性 有机氮/ (mg·kg-1) DON | 无机氮/ (mg·kg-1) IN | 全磷/ (g·kg-1) TP | 有效磷/ (mg·kg-1) AP | |
水曲柳ash | 97.2±3.7 a | 127.9±7.2 a | 14.7±1.3 a | 30.3±2.0 a | 52.3±2.1 a | 8.4±0.2 a | 124.9±7.2 a | 63.6±7.9 a | 1.2±0.1 a | 8.8±0.9 a |
落叶松larch | 90.6±3.8 a | 152.2±38.4 a | 19.2±1.2 b | 24.3±1.4 a | 47.1±2.0 b | 8.5±0.3 a | 105.5±8.5 a | 39.4±4.9 a | 1.5±0.3 a | 19.7±3.9 a |
Table 2
Comparisons of soil microbial biomass and related enzyme activities between F. mandshurica and L. gmelinii plantations"
树种 tree species | 含量/(mg·kg-1) content | 酶活性/(μg·g-1·h-1) activity | |||||
---|---|---|---|---|---|---|---|
微生物 生物量碳 MBC | 微生物 生物量氮 MBN | β-1,4-葡萄糖 苷酶 β-1,4- glucosidase | 几丁质酶 N-acetyl-β- glucosaminidase | 酸性磷 酸酶 acid phosphatase | 酚氧化酶 phenol oxidase | 过氧化物酶 peroxidase | |
水曲柳ash | 666.4±76.1 a | 95.5±9.67 a | 643.8±37.2 a | 223.3±24.4 a | 1 040.0±35.8 a | 17.6±1.0 a | 87.2±7.7a |
落叶松larch | 611.6±51.8 a | 107.4±9.20 a | 465.2±34.1 b | 204.8±5.7 a | 1 029.7±14.3 a | 14.2±2.2 a | 74.8±6.8 a |
[1] | 吕超群, 田汉勤, 黄耀. 陆地生态系统氮沉降增加的生态效应[J]. 植物生态学报, 2007, 31(2): 205-218. |
LÜ C Q, TIAN H Q, HUANG Y. Ecological effects of increased nitrogen deposition in terrestrial ecosystems[J]. Chin J Plant Ecol, 2007, 31(2): 205-218. DOI:10.17521/cjpe.2007.0025. | |
[2] | 周晓兵, 张元明. 干旱半干旱区氮沉降生态效应研究进展[J]. 生态学报, 2009, 29(7): 3835-3845. |
ZHOU X B, ZHANG Y M. Review on the ecological effects of N deposition in arid and semi-arid areas[J]. Acta Ecol Sin, 2009, 29(7): 3835-3845. DOI:10.3321/j.issn:1000-0933.2009.07.046. | |
[3] | 李延茂, 胡江春, 汪思龙, 等. 森林生态系统中土壤微生物的作用与应用[J]. 应用生态学报, 2004, 15(10): 1943-1946. |
LI Y M, HU J C, WANG S L, et al. Function and application of soil microorganisms in forest ecosystem[J]. Chin J Appl Ecol, 2004, 15(10): 1943-1946. DOI:10.13287/j.1001-9332.2004.0402. | |
[4] | SUN S, XING F, ZHAO H, et al. Response of bacterial community to simulated nitrogen deposition in soils and a unique relationship between plant species and soil bacteria in the Songnen grassland in northeastern China[J]. J Soil Sci Plant Nutr, 2014, 14(3): 565-580. DOI:10.4067/s0718-95162014005000045. |
[5] | LIU J, WU N, WANG H, et al. Nitrogen addition affects chemical compositions of plant tissues, litter and soil organic matter[J]. Ecology, 2016, 97(7): 1796-1806. DOI:10.1890/15-1683.1. |
[6] | SUN S Q, WU Y H, ZHANG J, et al. Soil warming and nitrogen deposition alter soil respiration, microbial community structure and organic carbon composition in a coniferous forest on eastern Tibetan Plateau[J]. Geoderma, 2019, 353: 283-292. DOI:10.1016/j.geoderma.2019.07.023. |
[7] | 周正虎, 王传宽. 微生物对分解底物碳氮磷化学计量的响应和调节机制[J]. 植物生态学报, 2016, 40(6): 620-630. |
ZHOU Z H, WANG C K. Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry[J]. Chin J Plant Ecol, 2016, 40(6): 620-630. DOI:10.17521/cjpe.2015.0449. | |
[8] | SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecol Lett, 2008, 11(11): 1252-1264. DOI:10.1111/j.1461-0248.2008.01245.x. |
[9] | SINSABAUGH R L, HILL B H, FOLLSTAD S J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment[J]. Nature, 2009, 462(7274): 795-798. DOI:10.1038/nature08632. |
[10] | ZHOU Z H, WANG C K, ZHENG M H, et al. Patterns and mechanisms of responses by soil microbial communities to nitrogen addition[J]. Soil Biol Biochem, 2017, 115: 433-441. DOI:10.1016/j.soilbio.2017.09.015. |
[11] | VESTERDAL L, SCHMIDT I K, CALLESEN I, et al. Carbon and nitrogen in forest floor and mineral soil under six common European tree species[J]. For Ecol Manag, 2008, 255(1): 35-48. DOI:10.1016/j.foreco.2007.08.015. |
[12] | BRZOSTEK E R, DRAGONI D, BROWN Z A, et al. Mycorrhizal type determines the magnitude and direction of root-induced changes in decomposition in a temperate forest[J]. New Phytol, 2015, 206(4): 1274-1282. DOI:10.1111/nph.13303. |
[13] | LIN G, MCCORMACK M L, MA C, et al. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests[J]. New Phytol, 2017, 213(3): 1440-1451. DOI:10.1111/nph.14206. |
[14] | 贺梦莹, 董利虎, 李凤日. 长白落叶松-水曲柳混交林不同混交方式单木冠长预测模型[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 13-22. |
HE M Y, DONG L H, LI F R. Tree crown length prediction models for Larix olgensis and Fraxinus mandshurica in mixed plantations with different mixing methods[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(4): 13-22. DOI:10.12302/j.issn.1000-2006.202005043. | |
[15] | 盛后财, 姚月锋, 蔡体久, 等. 物候变化对落叶松人工林降雨分配过程中钾和钠离子迁移的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 143-150. |
SHENG H C, YAO Y F, CAI T J, et al. Effects of phenoseason on transfer of potassium and sodium ions in the process of rainfall redistribution in larch (Larix gmelinii) plantations[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(6): 143-150. DOI:10.12302/j.issn.1000-2006.202102012. | |
[16] | 王薪琪, 王传宽. 东北5种温带人工林表层土壤碳氮含量的分异[J]. 应用生态学报, 2019, 30(6): 1911-1918. |
WANG X Q, WANG C K. Variations in topsoil carbon and nitrogen contents of five temperate plantations in northeast China[J]. Chin J Appl Ecol, 2019, 30(6): 1911-1918. DOI:10.13287/j.1001-9332.201906.003. | |
[17] | COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al. The Microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter?[J]. Glob Change Biol, 2013, 19(4): 988-995. DOI:10.1111/gcb.12113. |
[18] | JIN Y, WANG C K, ZHOU Z H, et al. Contrasting responses of hydraulic traits between leaf and branch to 16-year nitrogen addition in a larch plantation[J]. For Ecol Manag, 2020, 475: 118461. DOI:10.1016/j.foreco.2020.118461. |
[19] | WANG Z Q, GUO D L, WANG X R, et al. Fine root architecture, morphology, and biomass of different branch orders of two Chinese temperate tree species[J]. Plant Soil, 2006, 288(1/2): 155-171. DOI:10.1007/s11104-006-9101-8. |
[20] | SUN Y, GU J C, ZHUANG H F, et al. Effects of ectomycorrhizal colonization and nitrogen fertilization on morphology of root tips in a Larix gmelinii plantation in northeastern China[J]. Eco Res, 2010, 25(2): 295-302. DOI:10.1007/s11284-009-0654-x. |
[21] | ROVIRA P, VALLEJO V R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach[J]. Geoderma, 2002, 107(1/2): 109-141. DOI:10.1016/S0016-7061(01)00143-4. |
[22] | VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biol Biochem, 1987, 19(6): 703-707. DOI:10.1016/0038-0717(87)90052-6. |
[23] | MARTENS D A, JOHANSON J B, FRANKENBERGER W T JR. Production and persistence of soil enzymes with repeated addition of organic residues[J]. Soil Sci, 1992, 153(1): 53-61. DOI:10.1097/00010694-199201000-00008. |
[24] | KNOPS J M H, BRADLEY K L, WEDIN D A. Mechanisms of plant species impacts on ecosystem nitrogen cycling[J]. Ecol Lett, 2002, 5(3): 454-466. DOI:10.1046/j.1461-0248.2002.00332.x. |
[25] | HUANG Z Q, CLINTON P W, DAVIS M R. Post-harvest residue management effects on recalcitrant carbon pools and plant biomarkers within the soil heavy fraction in Pinus radiata plantations[J]. Soil Bio Biochem, 2011, 43(2): 404-412. DOI:10.1016/j.soilbio.2010.11.008. |
[26] | XU X F, THORNTON P E, POST W M. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems[J]. Glob Ecol Biogeogr, 2013, 22(6): 737-749. DOI:10.1111/geb.12029. |
[27] | TRESEDER K K. Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies[J]. Ecol Lett, 2008, 11(10): 1111-1120. DOI:10.1111/j.1461-0248.2008.01230.x. |
[28] | JIA S X, WANG Z Q, LI X P, et al. N fertilization affects on soil respiration, microbial biomass and root respiration in Larix gmelinii and Fraxinus mandshurica plantations in China[J]. Plant Soil, 2010, 333(1/2): 325-336. DOI:10.1007/s11104-010-0348-8. |
[29] | TIAN D, JIANG L, MA S, et al. Effects of nitrogen deposition on soil microbial communities in temperate and subtropical forests in China[J]. Sci Total Environ, 2017, 607/608: 1367-1375. DOI:10.1016/j.scitotenv.2017.06.057. |
[30] | JIAN S Y, LI J W, CHEN J, et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis[J]. Soil Biol Biochem, 2016, 101: 32-43. DOI:10.1016/j.soilbio.2016.07.003. |
[31] | SINSABAUGH R L. Phenol oxidase, peroxidase and organic matter dynamics of soil[J]. Soil BiolBiochem, 2010, 42(3): 391-404. DOI:10.1016/j.soilbio.2009.10.014. |
[32] | READ D J, PEREZ-MORENO J. Mycorrhizas and nutrient cycling in ecosystems: a journey towards relevance?[J]. New Phytol, 2003, 157(3): 475-492. DOI:10.1046/j.1469-8137.2003.00704.x. |
[33] | XIAO W, CHEN X, JING X, et al. A meta-analysis of soil extracellular enzyme activities in response to global change[J]. Soil Biol Biochem, 2018, 123: 21-32. DOI:10.1016/j.soilbio.2018.05.001. |
[34] | CHEN H, LI D J, ZHAO J, et al. Effects of nitrogen addition on activities of soil nitrogen acquisition enzymes:a meta-analysis[J]. Agric Ecosyst and Environ, 2018, 252: 126-131. DOI:10.1016/j.agee.2017.09.032. |
[35] | WEAND M P, ARTHUR M A, LOVETT G M, et al. Effects of tree species and N additions on forest floor microbial communities and extracellular enzyme activities[J]. Soil Biol Biochem, 2010, 42(12): 2161-2173. DOI:10.1016/j.soilbio.2010.08.012. |
[36] | ALLISON S D, CZIMCZIK C I, TRESEDER K K. Microbial activity and soil respiration under nitrogen addition in Alaskan boreal forest[J]. Glob Change Biol, 2008, 14(5): 1156-1168. DOI:10.1111/j.1365-2486.2008.01549.x. |
[37] | 曹子铖, 程淑兰, 方华军, 等. 温带针阔叶林土壤有机碳动态和微生物群落结构对有机氮添加的响应特征[J]. 土壤学报, 2020, 57(4):963-974. |
CAO Z C, CHENG S L, FANG H J, et al. Responses of soil organic carbon dynamics and microbial community structure to organic nitrogen fertilization in the temperate needle-broadleaved mixed forest[J]. Acta Pedologica Sinica, 2020, 57(4):963-974. DOI:10.11766/trxb201908130350. | |
[38] | XU C H, XU X, JU C H, et al. Long-term, amplified responses of soil organic carbon to nitrogen addition worldwide[J]. Glob Change Biol, 2021, 27(6): 1170-1180. DOI:10.1111/gcb.15489. |
[39] | XIA J, WAN S. Global response patterns of terrestrial plant species to nitrogen addition[J]. New Phytol, 2008, 179(2): 428-439. DOI:10.1111/j.1469-8137.2008.02488.x. |
[40] | XIA M, TALHELM A F, PREGITZER K S. Fine roots are the dominant source of recalcitrant plant litter in sugar maple-dominated northern hardwood forests[J]. New Phytol, 2015, 208(3): 715-726. DOI:10.1111/nph.13494. |
[41] | XIA M, TALHELM A F, PREGITZER K S. Long-term simulated atmospheric nitrogen deposition alters leaf and fine root decomposition[J]. Ecosystems, 2018, 21(1): 1-14. DOI:10.1007/s10021-017-0130-3. |
[42] | FRESCHET G T, CORNWELL W K, WARDLE D A, et al. Linking litter decomposition of above-and below-ground organs to plant-soil feedbacks worldwide[J]. J Ecol, 2013, 101(4): 943-952. DOI:10.1111/1365-2745.12092. |
[43] | 涂利华, 胡庭兴, 张健, 等. 模拟氮沉降对华西雨屏区苦竹林土壤有机碳和养分的影响[J]. 植物生态学报, 2011, 35(2): 125-136. |
TU L H, HU T X, ZHANG J, et al. Response of soil organic carbon and nutrients to simulated nitrogen deposition in Pleioblastus amarus plantation, rainy area of west China[J]. Chin J Plant Ecol, 2011, 35(2): 125-136. DOI:10.3724/SP.J.1258.2011.00125. | |
[44] | 林伟, 马红亮, 裴广廷, 等. 氮添加对亚热带森林土壤有机碳氮组分的影响[J]. 环境科学研究, 2016, 29(1): 67-76. |
LIN W, MA H L, PEI G T, et al. Effects of nitrogen addition on soil carbon and nitrogen pools in mid-subtropical forest[J]. Res Environ Sci, 2016, 29(1): 67-76. DOI:10.13198/j.issn.1001-6929.2016.01.09. | |
[45] | LIANG C, AMELUNG W, LEHMANN J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter[J]. Glob Change Biol, 2019, 25(11): 3578-3590.DOI:10.1111/gcb.14781. |
[46] | YUE K, FORNARA D A, YANG W, et al. Effects of three global change drivers on terrestrial C∶N∶P stoichiometry: a global synthesis[J]. Glob Change Biol, 2017, 23(6): 2450-2463. DOI:10.1111/gcb.13569. |
[47] | LU M, YANG Y H, LUO Y Q, et al. Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis[J]. New Phytol, 2011, 189(4): 1040-1050. DOI:10.1111/j.1469-8137.2010.03563.x. |
[48] | 肖华翠, 李靖雯, 夏允, 等. 中亚热带不同母质发育森林土壤磷组分特征及其影响因素[J]. 应用生态学报, 2021, 32(1): 16-22. |
XIAO H C, LI J W, XIA Y, et al. Characteristics of phosphorus fractions and their driving factors in forest soils with different parent materials in the mid-subtropics, China[J]. Chin J Appl Ecol, 2021, 32(1): 16-22. DOI:10.13287/j.1001-9332.202101.001. | |
[49] | VITOUSEK P M, PORDER S, HOULTON B Z, et al. Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions[J]. Ecol Appl, 2010, 20(1): 5-15. DOI:10.1890/08-0127.1. |
[1] | YANG Yongchao, DUAN Wenbiao, CHEN Lixin, QU Meixue, WANG Yafei, WANG Meijuan, SHI Jinyong, PAN Lei. Effects of simulated nitrogen and phosphorus deposition and litter treatment on soil organic carbon components in two types of Pinus koraiensis forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 57-66. |
[2] | SUN Meijia, ZHOU Zhiyong, WANG Yongqiang, SHEN Ying, XIA Wei. The effect of organic matter addition on soil respiration and carbon component in Pinus tabuliformis forests in Taiyue Mountain, Shanxi Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 67-75. |
[3] | ZOU Xiaoming, WANG Guobing, GE Zhiwei, XIE Youchao, RUAN Honghua, WU Xiaoqiao, YANG Yan. Mechanisms and methods for augmenting carbon sink in forestry [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 167-176. |
[4] | WANG Youliang, LIN Kaimin, SONG Chongsheng, CUI Chaowei, PENG Lihong, ZHENG Hong, ZHENG Mingming, REN Zhengbiao, QIU Mingjing. Short-term effects of thinning on carbon storage in Chinese fir plantation ecosystems [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 65-73. |
[5] | LIU Ke, LI Mingyang, LI Ling, TIAN Kang, FAN Ya’nan, WANG Zhigang, QU Mingkai, HUANG Biao. Spatial heterogeneity of the soil organic carbon density and its driving factors in the water source area of the Middle Route of China South-to-North Water Diversion Project [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 35-43. |
[6] | ZHU Zhu, XU Xia, YANG Sailan, PENG Fanxi, ZHANG Huiguang, CAI Bin. A review on the temperature sensitivity of soil organic carbon decomposition in terrestrial ecosystem [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 33-39. |
[7] | ZHU Jiaqi, MAN Xiuling, WANG Fei. Organic carbon and nitrogen characteristics of soil aggregates in four forest types in frigid temperate zone [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 71-83. |
[8] | JI Huai, HAN Jiangang, LI Pingping, ZHU Yongli, GUO Yanhui, HAO Daping, CUI Hao. Effects of different vegetation types on soil organic carbon particle size distribution and microbial community structure in Hongze Lake Wetland [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(1): 141-150. |
[9] | LUO Bizhen, HU Haiqing, LUO Sisheng, WEI Shujing, WU Zepeng, LIU Fei. Effects of forest fire disturbance on soil organic carbon density and labile organic carbon of Pinus massoniana forests in Guangdong Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 132-140. |
[10] | XUE Bin,XU Hanmei, RUAN Honghua. A review on the effects of biogas slurry on agroforestry soil ecosystems [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(03): 175-182. |
[11] | YU Hui, CHEN Yan, ZHANG Huan, ZHOU Zhiyong. The effect of inorganic nitrogen addition on soil nitrogen and greenhouse gas flux for the Pinus tabulaeformis forest in Taiyue Mountain,Shanxi Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(03): 85-91. |
[12] | QUAN Wei, ZHENG Fangdong, RONG Jiantao. Soil carbon density and C/N distribution of seven forest types in Wuyanling Nature Reserve, Zhejiang Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(01): 175-180. |
[13] | TIAN Yaowu,LIU Yifeng,WANG Cong,WANG Gang,HE Wuyuheng. Correlation between forest soil organic carbon density and environmental factors in Funiu Mountain, Henan Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(01): 83-90. |
[14] | MENG Miaojing, ZHANG Jinchi, GUO Xiaoping, WU Jiasen, ZHAO Youpeng, YE Lixin, LIU Shenglong. Effects of altitude change on soil organic carbon fractions in Pinus taiwanensis and broad-leaved mixed forest [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(06): 106-112. |
[15] | QUAN Wei, RONG Jiantao, ZHENG Fangdong. Distribution of soil organic carbon among different forest types in Wuyanling Nature Reserve [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(04): 198--1. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||