JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (3): 1-10.doi: 10.12302/j.issn.1000-2006.202206048
Special Issue: 第三届中国林草计算机应用大会论文精选
Previous Articles Next Articles
GAO Jiajun(), ZHANG Xu, GUO Ying(
), LIU Yukun, GUO Anqi, SHI Mengmeng, WANG Peng, YUAN Ying
Received:
2022-06-25
Revised:
2022-12-27
Online:
2023-05-30
Published:
2023-05-25
Contact:
GUO Ying
E-mail:wuligaojiajun@163.com;guoying@ifrit.ac.cn
CLC Number:
GAO Jiajun, ZHANG Xu, GUO Ying, LIU Yukun, GUO Anqi, SHI Mengmeng, WANG Peng, YUAN Ying. Research on the optimized pest image instance segmentation method based on the Swin Transformer model[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 1-10.
Table 1
Ablation experiments"
模型 model | F1分数/% F1 score | 平均 精度/% AP | 小目标 F1分数/% F1 score of small target | 小目标 平均 精度/% AP of small target | 参数 大小/MB parameter size |
---|---|---|---|---|---|
PST(box) | 89.7 | 88.0 | 88.4 | 86.3 | 180 |
PST(seg) | 84.3 | 82.2 | 84.0 | 81.7 | |
PST-S(box) | 88.9 | 87.1 | 88.3 | 86.6 | 262 |
PST-S(seg) | 83.8 | 82.2 | 82.8 | 81.1 | |
MRC 50(box) | 80.3 | 78.6 | 78.3 | 76.6 | 168 |
MRC 50(seg) | 75.7 | 73.8 | 74.6 | 72.8 | |
MRC 101(box) | 81.7 | 79.5 | 79.9 | 77.3 | 240 |
MRC 101(seg) | 76.0 | 73.5 | 74.5 | 72.0 |
[1] | 徐锡祥. 林业病虫害特点、原因及综合防治解析[J]. 新农业, 2021(22):22. |
XU X X. Analysis on characteristics,causes and integrated control of forest diseases and pests[J]. Modern Agriculture, 2021(22):22. | |
[2] | 张旭. 森林病虫害的发生特点及综合防治技术[J]. 农业灾害研究, 2021, 11(7):21-22. |
ZHANG X. Occurrence characteristics and integrated control technology of forest diseases and insect pests[J]. J Agric Catastrophology, 2021, 11(7):21-22. | |
[3] | 樊巍, 苑静, 赵波. 森林病虫害的发生特点及综合防治技术[J]. 农业与技术, 2019, 39(23):70-71. |
FAN W, YUAN J, ZHAO B. Occurrence characteristics and integrated control techniques of forest diseases and insect pests[J]. Agric Technol, 2019, 39(23):70-71.DOI:10.19754/j.nyyjs.20191215028. | |
[4] | NASSER SHAH N A, OSMAN M K, OTHMAN N A, et al. Identification and counting of brown planthopper in paddy field using image processing techniques[J]. Procedia Comput Sci, 2019, 163:580-590.DOI:10.1016/j.procs.2019.12.140. |
[5] | WEN C L, WU D X, HU H S, et al. Pose estimation-dependent identification method for field moth images using deep learning architecture[J]. Biosyst Eng, 2015, 136:117-128.DOI:10.1016/j.biosystemseng.2015.06.002. |
[6] | WANG R J, ZHANG J, DONG W, et al. A crop pests image classification algorithm based on deep convolutional neural network[J]. TELKOMNIKA (Telecommun Comput Electron Control), 2017, 15(3):1239.DOI:10.12928/TELKOMNIKA.v15i3.5382. |
[7] | 李静, 陈桂芬, 安宇. 基于优化卷积神经网络的玉米螟虫害图像识别[J]. 华南农业大学学报, 2020, 41(3):110-116. |
LI J, CHEN G F, AN Y. Image recognition of Pyrausta nubilalis based on optimized convolutional neural network[J]. J South China Agric Univ, 2020, 41(3):110-116.DOI:10.7671/j.issn.1001-411X.201907017. | |
[8] | KARAR M E, ALSUNAYDI F, ALBUSAYMI S, et al. A new mobile application of agricultural pests recognition using deep learning in cloud computing system[J]. Alex Eng J, 2021, 60(5):4423-4432.DOI:10.1016/j.aej.2021.03.009. |
[9] | HONG S J, KIM S Y, KIM E, et al. Moth detection from pheromone trap images using deep learning object detectors[J]. Agriculture, 2020, 10(5):170.DOI:10.3390/agriculture10050170. |
[10] | GONÇALVES J P, PINTO F A C, QUEIROZ D M, et al. Deep learning architectures for semantic segmentation and automatic estimation of severity of foliar symptoms caused by diseases or pests[J]. Biosyst Eng, 2021, 210:129-142.DOI:10.1016/j.biosystemseng.2021.08.011. |
[11] | 田洪宝. 基于深度卷积神经网络的林区航拍图像虫害区域分割[D]. 北京: 北京林业大学, 2019. |
TIAN H B. Pest region segmentation of aerial photography image in forest region based on deep convolution neural networks[D]. Beijing: Beijing Forestry University, 2019. | |
[12] | 陈冬梅, 张赫, 魏凯华, 等. 复杂背景下昆虫图像的快速分割与识别[J]. 江苏农业科学, 2021, 49(24):195-204. |
CHEN D M, ZHANG H, WEI K H, et al. Fast segmentation and recognition of insect images in complex background[J]. Jiangsu Agric Sci, 2021, 49(24):195-204. DOI: 10.15889/j.issn.1002-1302.2021.24.034. | |
[13] | 王卫民, 符首夫, 顾榕蓉, 等. 基于卷积神经网络的虫情图像分割和计数方法[J]. 计算机工程与科学, 2020, 42(1):110-116. |
WANG W M, FU S F, GU R R, et al. An insect image segmentation and counting method based on convolutional neural network[J]. Comput Eng & Sci, 2020, 42(1):110-116.DOI:10.3969/j.issn.1007-130X.2020.01.0114. | |
[14] | 张善文, 邵彧, 齐国红, 等. 基于多尺度注意力卷积网络的作物害虫检测[J]. 江苏农业学报, 2021, 37(3):579-588. |
ZHANG S W, SHAO Y, QI G H, et al. Crop pest detection based on multi-scale convolutional network with attention[J]. Jiangsu J Agr Sci, 2021, 37(3):579-588.DOI:10.3969/j.issn.1000-4440.2021.03.005. | |
[15] | 谭富祥, 钱育蓉, 孔钰婷, 等. 基于Transformer的多分支单图像去雨方法[J]. 计算机应用研究, 2022, 39(8):2500-2505,2519. |
TAN F X, QIAN Y R, KONG Y T, et al. Multi-branch single image deraining network based on Transformer[J]. Appl Res Comput, 2022, 39(8):2500-2505, 2519.DOI:10.19734/j.issn.1001-3695.2021.12.0695. | |
[16] | 陈敏, 王君, 董明利, 等. 改进的Mask R-CNN多尺度实例分割算法研究[J]. 激光杂志, 2020, 41(5):40-44. |
CHEN M, WANG J, DONG M L, et al. Research on improved Mask R-CNN for multi-scale instance segmentation method[J]. Laser J, 2020, 41(5):40-44.DOI:10.14016/j.cnki.jgzz.2020.05.040. | |
[17] | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all You need[EB/OL].[2022-12-01]. http://arxiv.org/abs/1706.03762. |
[18] | 田应仲, 卜雪虎. 基于注意力机制与Swin Transformer模型的腰椎图像分割方法[J]. 计量与测试技术, 2021, 48(12):57-61. |
TIAN Y Z, BU X H. Lumbar spine image segmentation method based on attention mechanism and Swin Transformer model[J]. Metrol & Meas Tech, 2021, 48(12):57-61.DOI:10.15988/j.cnki.1004-6941.2021.12.013. | |
[19] | 张重生, 陈杰, 纵瑞星, 等. 基于Transformer的低质场景字符检测算法[J]. 北京邮电大学学报, 2022, 45(2):124-130. |
ZHANG C S, CHEN J, ZONG R X, et al. Transformer based scene character detection over low quality images[J]. J Beijing Univ Posts Telecommun, 2022, 45(2):124-130.DOI:10.13190/j.jbupt.2021-155. | |
[20] | LIU Z, LIN Y T, CAO Y, et al. Swin transformer:hierarchical vision transformer using shifted windows[C]// IEEE/CVF International Conference on Computer Vision (ICCV).Montreal,QC,Canada.IEEE, 2021:9992-10002.DOI:10.1109/ICCV48922.2021.00986. |
[21] | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas,NV,USA: IEEE, 2017:2961-2969.DOI:10.1109/ICCV.2017.322. |
[22] | 蒋开彬, 祝文娟, 潘文, 等. 基于SRAP标记的土沉香遗传多样性分析[J]. 中南林业科技大学学报, 2020, 40(1):131-136. |
JIANG K B, ZHU W J, PAN W, et al. Analysis of genetic diversity of Aquilaria sinensis(Lour.) Gilg based on SRAP markers[J]. J Central South Univ For & Technol, 2020, 40(1):131-136.DOI:10.14067/j.cnki.1673-923x.2020.01.016. | |
[23] | 庞圣江, 张培, 杨保国, 等. 林隙大小对土沉香人工更新幼树生长发育的影响[J]. 西北农林科技大学学报(自然科学版), 2020, 48(4):83-88. |
PANG S J, ZHANG P, YANG B G, et al. Effects of gap size on growth of transplanted saplings of Aquilaria sinensis[J]. J Northwest A & F Univ (Nat Sci Ed), 2020, 48(4):83-88.DOI:10.13207/j.cnki.jnwafu.2020.04.011. | |
[24] | 张小霞. 土沉香开发利用研究进展[J]. 防护林科技, 2020(4):63-66. |
ZHANG X X. Research progress on development and utilization of Aquilaria sinensis[J]. Prot For Sci Technol, 2020(4):63-66.DOI:10.13601/j.issn.1005-5215.2020.04.024. | |
[25] | 宋晓琛, 王西洋, 杨光, 等. 无机盐与激素混合对土沉香结香的诱导[J]. 林业科学, 2020, 56(8):121-130. |
SONG X C, WANG X Y, YANG G, et al. Mechanism of agarwood formation under the induction of both inorganic salts and hormones[J]. Sci Silvae Sin, 2020, 56(8):121-130.DOI:10.11707/j.1001-7488.20200814. | |
[26] | 洪仁辉, 尹吉锋, 陈彧, 等. 白木香重要害虫黄野螟研究进展[J]. 热带林业, 2019, 47(3):66-68. |
HONG R H, YIN J F, CHEN Y, et al. Advances in research on the Heortia vitessoides Moore on Aquilaria sinensis[J]. Trop For, 2019, 47(3):66-68.DOI:10.3969/j.issn.1672-0938.2019.03.015. | |
[27] | 王忠, 谢伟忠, 朱诚棋, 等. 黄野螟的羽化和生殖行为节律[J]. 中国森林病虫, 2018, 37(1):24-27,30. |
WANG Z, XIE W Z, ZHU C Q, et al. Circadian rhythm of emergence and reproduction of Heortia vitessoides Moore (Lepidoptera:Crambidae)[J]. For Pest Dis, 2018, 37(1):24-27,30. | |
[28] | 茅裕婷, 张蒙, 靳秀芳, 等. 土沉香对黄野螟的抗性研究[J]. 华南农业大学学报, 2017, 38(6):89-96. |
MAO Y T, ZHANG M, JIN X F, et al. Study on resistance of Aquilaria sinensis against Heortia vitessoides[J]. J South China Agric Univ, 2017, 38(6):89-96.DOI:10.7671/j.issn.1001-411X.2017.06.014. | |
[29] | 严珍, 岳建军. 温度及补充营养对黄野螟生长发育和繁殖的影响[J]. 热带作物学报, 2019, 40(9):1789-1795. |
YAN Z, YUE J J. Effects of temperature and supplementary foods on the development and fecundity of Heortia vitessoides[J]. Chin J Trop Crops, 2019, 40(9):1789-1795.DOI:10.3969/j.issn.1000-2561.2019.09.017. | |
[30] | 高新波, 莫梦竟成, 汪海涛, 等. 小目标检测研究进展[J]. 数据采集与处理, 2021, 36(3):391-417. |
GAO X B, MO M J C, WANG H T, et al. Recent advances in small object detection[J]. J Data Acquis Process, 2021, 36(3):391-417.DOI:10.16337/j.1004-9037.2021.03.001. | |
[31] | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition.Boston,MA, USA:IEEE, 2015:3431-3440.DOI:10.1109/CVPR.2015.7298965. |
[32] | HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[EB/OL].[2022-12-01]. http://arxiv.org/abs/1207.0580. |
[33] | 张海燕, 徐心语, 马雪芬, 等. 超声图像中复合材料褶皱形态的Mask-RCNN识别方法[J]. 物理学报, 2022, 71(7):074302. |
ZHANG H Y, XU X Y, MA X F, et al. Mask-RCNN recognition method of composite fold shape in ultrasound images[J]. Acta Phys Sin, 2022, 71(7):074302.DOI:10.7498/aps.71.20212009. | |
[34] | LIN T L, CHANG H Y, CHEN K H. Pest and disease identification in the growth of sweet peppers using faster R-CNN[J]. IEEE Int Conf Consumer Electron Taiwan (ICCE TW), 2019:1-2.DOI:10.1109/ICCE-TW46550.2019.8991893. |
[35] | 周维, 牛永真, 王亚炜, 等. 基于改进的YOLOv4-GhostNet水稻病虫害识别方法[J]. 江苏农业学报, 2022, 38(3):685-695. |
ZHOU W, NIU Y Z, WANG Y W, et al. Rice pests and diseases identification method based on improved YOLOv4-GhostNet[J]. Jiangsu J Agr Sci, 2022, 38(3):685-695.DOI:10.3969/j.issn.1000-4440.2022.03.014. | |
[36] | 刘晨曦, 刘大铭, 杨芳, 等. 基于改进水平集的水稻虫害分割算法[J]. 宁夏大学学报(自然科学版), 2019, 40(3):246-254. |
LIU C X, LIU D M, YANG F, et al. Partitioning algorithm for rice pest based on improved level set method[J]. J Ningxia Univ (Nat Sci Ed), 2019, 40(3):246-254.DOI:10.3969/j.issn.0253-2328.2019.03.010. | |
[37] | 卜俊怡, 孙国祥, 王迎旭, 等. 基于诱虫板图像的温室番茄作物害虫识别与监测方法[J]. 南京农业大学学报, 2021, 44(2):373-383. |
BU J Y, SUN G X, WANG Y X, et al. Identification and monitoring method of tomato crop pests in greenhouse based on trapping board image[J]. J Nanjing Agric Univ, 2021, 44(2):373-383.DOI:10.7685/jnau.202005031. |
[1] | YAN Yu, LI Qiujie. Online segmentation method of target point cloud in roadside tree [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 141-149. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||