JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (6): 91-101.doi: 10.12302/j.issn.1000-2006.202302021
Previous Articles Next Articles
LUO Chunyan1(), GENG Hongkai1,2, WANG Xiujun1, LI Zihang1, GUO Linfan1, LI Qingwei1,*(
)
Received:
2023-02-23
Revised:
2023-05-29
Online:
2024-11-30
Published:
2024-12-10
Contact:
LI Qingwei
E-mail:lcyy0202@163.com;lqw6809@bjfu.edu.cn
CLC Number:
LUO Chunyan, GENG Hongkai, WANG Xiujun, LI Zihang, GUO Linfan, LI Qingwei. Effects of exogenous salicylic acid on growth and photosynthesis of Ginkgo biloba under NaCl stress[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 91-101.
Table 2
Pricipal components analysis of the effects of SA on the growth and photosynthesis of Ginkgo biloba under NaCl stress of different concentrations"
指标 index | N1 | N2 | N3 | |||
---|---|---|---|---|---|---|
主成分1 PC 1 | 主成分2 PC 2 | 主成分1 PC 1 | 主成分2 PC 2 | 主成分1 PC 1 | 主成分2 PC 2 | |
叶鲜质量leaf fresh weight | 0.876 | -0.230 | 0.852 | -0.215 | 0.943 | 0.023 |
叶绿素a含量Chla content | 0.916 | -0.074 | 0.931 | -0.010 | 0.934 | -0.309 |
叶绿素b含量Chlb content | 0.944 | -0.130 | 0.938 | -0.311 | 0.907 | -0.361 |
总叶绿素含量total Chl content | 0.939 | -0.094 | 0.963 | -0.154 | 0.936 | -0.335 |
净光合速率Pn | 0.823 | -0.130 | 0.851 | -0.299 | 0.955 | 0.004 |
气孔导度Gs | 0.790 | -0.130 | 0.850 | -0.268 | 0.845 | -0.238 |
胞间CO2浓度Ci | 0.294 | 0.818 | 0.242 | 0.803 | 0.791 | 0.199 |
蒸腾速率Tr | 0.854 | -0.458 | 0.881 | -0.272 | 0.922 | 0.169 |
最大光化学效率Fv/Fm | 0.896 | 0.246 | 0.934 | 0.056 | 0.953 | -0.109 |
光化学猝灭系数qP | 0.896 | 0.246 | 0.582 | 0.692 | 0.819 | 0.473 |
实际光化学量子产量Y(Ⅱ) | -0.006 | 0.872 | 0.454 | 0.179 | 0.693 | 0.660 |
相对电子传递速率ETR | 0.538 | 0.731 | 0.549 | 0.692 | 0.915 | 0.057 |
特征值eigenvalue | 6.835 | 2.986 | 7.397 | 2.525 | 9.457 | 1.137 |
方差贡献率/% proportion of variance | 56.962 | 24.881 | 61.645 | 21.039 | 78.806 | 9.474 |
累计方差贡献率/% cummulitive variance contribution rate | 56.962 | 81.843 | 61.645 | 82.684 | 78.806 | 88.280 |
Table 3
Comprehensive score and ranking of the effects of different concentrations of SA on the growth and photosynthesis of Ginkgo biloba under NaCl stress"
处理 treatment | 得分score | 排名 ranking | 处理 treatment | 得分score | 排名 ranking | ||||
---|---|---|---|---|---|---|---|---|---|
PC 1 | PC 2 | 综合 comprehensive | PC 1 | PC 2 | 综合 comprehensive | ||||
N1 | -2.260 | -0.082 | -1.308 | 4 | N2S2 | 2.580 | 0.917 | 1.783 | 1 |
N1S1 | 2.400 | -1.830 | 0.380 | 2 | N2S3 | -1.374 | -1.197 | -1.099 | 3 |
N1S2 | 3.460 | 3.130 | 1.684 | 1 | N3 | -1.573 | 0.230 | -1.218 | 3 |
N1S3 | -0.070 | -2.440 | -1.110 | 3 | N3S1 | 1.121 | -0.112 | 0.873 | 2 |
N2 | -1.913 | -0.573 | -1.300 | 4 | N3S2 | 2.790 | 0.446 | 2.241 | 1 |
N2S1 | 0.843 | 0.039 | 0.528 | 2 | N3S3 | -3.782 | -0.564 | -3.034 | 4 |
Table 4
Fuzzy comprehensive quality evaluation of different concentrations of exogenous SA on the growth and photosynthesis of Ginkgo biloba under NaCl stress"
指标index | N1 | N1S1 | N1S2 | N1S3 | N2 | N2S1 | N2S2 | N2S3 | N3 | N3S1 | N3S2 | N3S3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
叶鲜质量leaf fresh weight | 0.714 | 0.312 | 0.581 | 0.566 | 0.503 | 0.575 | 0.538 | 0.311 | 0.688 | 0.514 | 0.460 | 0.522 |
叶绿素a含量Chla content | 0.386 | 0.494 | 0.747 | 0.389 | 0.540 | 0.681 | 0.537 | 0.561 | 0.509 | 0.547 | 0.747 | 0.364 |
叶绿素b含量Chlb content | 0.345 | 0.612 | 0.500 | 0.400 | 0.442 | 0.518 | 1.667 | 0.553 | 0.467 | 0.562 | 0.580 | 0.663 |
总叶绿素含量total Chl content | 0.345 | 0.574 | 0.574 | 0.329 | 0.408 | 0.538 | 0.436 | 0.442 | 0.263 | 0.476 | 0.630 | 0.323 |
净光合速率Pn | 0.187 | 0.596 | 0.613 | 0.472 | 0.447 | 0.520 | 0.579 | 0.511 | 0.871 | 0.441 | 0.610 | 0.610 |
气孔导度Gs | 0.503 | 0.472 | 0.538 | 0.476 | 0.537 | 0.502 | 0.264 | 0.428 | 0.469 | 0.305 | 0.664 | 0.346 |
胞间CO2浓度Ci | 0.689 | 0.314 | 0.527 | 0.494 | 0.666 | 0.620 | 0.947 | 0.389 | 0.471 | 0.541 | 0.448 | 0.623 |
蒸腾速率Tr | 0.565 | 0.318 | 0.612 | 0.468 | 0.588 | 0.466 | 0.516 | 0.387 | 0.469 | 1.000 | 0.566 | 0.326 |
最大光化学效率Fv/Fm | 0.552 | 0.619 | 0.661 | 0.584 | 0.471 | 0.384 | 0.556 | 0.620 | 0.511 | 0.429 | 0.596 | 0.575 |
光化学猝灭系数qP | 0.459 | 0.875 | 0.878 | 0.548 | 0.455 | 0.842 | 0.839 | 0.918 | 0.541 | 0.500 | 0.870 | 0.241 |
实际光化学量子产量Y(Ⅱ) | 0.498 | 0.625 | 0.571 | 0.551 | 0.668 | 0.436 | 0.417 | 0.553 | 0.573 | 0.550 | 0.667 | 0.478 |
相对电子传递速率ETR | 0.491 | 0.661 | 0.576 | 0.543 | 0.272 | 0.433 | 0.420 | 0.554 | 0.573 | 0.549 | 0.668 | 0.140 |
隶属度平均值average affiliation | 0.478 | 0.539 | 0.615 | 0.485 | 0.500 | 0.543 | 0.643 | 0.519 | 0.534 | 0.535 | 0.626 | 0.434 |
排名ranking | 4 | 2 | 1 | 3 | 4 | 2 | 1 | 3 | 3 | 2 | 1 | 4 |
[1] | MUNNS R. Genes and salt tolerance: bringing them together[J]. The New Phytol, 2005, 167(3): 645-663. DOI: 10.1111/j.1469-8137.2005.01487.x. |
[2] | LIANG W J, MA X L, WAN P, et al. Plant salt-tolerance mechanism: a review[J]. Biochem Biophys Res Commun, 2018, 495(1): 286-291. DOI:10.1016/j.bbrc.2017.11.043. |
[3] | 毛庆莲, 王胜. 国内盐碱地治理趋势探究浅析[J]. 湖北农业科学, 2020, 59(S1): 302-306. |
MAO Q L, WANG S. Brief analysis on the trend of improve saline alkali soil in China[J]. Hubei Agric Sci, 2020, 59(S1): 302-306. DOI:10.14088/j.cnki.issn0439-8114.2020.S1.085. | |
[4] | MAYER T, ROCHFORT Q, BORGMANN U, et al. Geochemistry and toxicity of sediment porewater in a salt-impacted urban stormwater detention pond[J]. Environ Pollut, 2008, 156(1): 143-151. DOI: 10.1016/j.envpol.2007.12.018. |
[5] | JAYAKANNAN M, BOSE J, BABOURINA O, et al. Salicylic acid in plant salinity stress signalling and tolerance[J]. Plant Growth Regul, 2015, 76(1): 25-40. DOI:10.1007/s10725-015-0028-z. |
[6] | 甘红豪, 赵帅, 高明远, 等. 外源水杨酸对NaCl胁迫下白榆幼苗光合作用及离子分配的影响[J]. 西北植物学报, 2020, 40(3): 478-489. |
GAN H H, ZHAO S, GAO M Y, et al. Effect of salicylic acid on photosynthesis and ion distribution of Ulmus pumila seedlings under NaCl stress[J]. Acta Bot Boreali-Occidentalia Sin, 2020, 40(3): 478-489. DOI:10.7606/j.issn.1000-4025.2020.03.0478. | |
[7] | 逯亚玲. 外源水杨酸处理和NaCl胁迫对紫花苜蓿种子萌发及幼苗生长的影响[D]. 南京: 南京农业大学, 2018. |
LU Y L. Effects of salicylic acid and NaCl on seed germination and seeding physiological of alfalfa[D]. Nanjing: Nanjing Agricultural University, 2018. DOI:10.27244/d.cnki.gnjnu.2018.001189. | |
[8] | 杨凤军, 李天来, 宿越, 等. 外源水杨酸对NaCl胁迫下番茄幼苗光合特性的影响[J]. 中国蔬菜, 2012 (22): 35-40. |
YANG F J, LI T L, SU Y, et al. Effects of salicylic acid on photosynthesis characteristics of tomato seedlings during NaCl stress[J]. China Veg, 2012 (22):35-40. DOI:10.19928/j.cnki.1000-6346.2012.22.006. | |
[9] | 王立红, 张巨松, 李星星, 等. 外源水杨酸对盐胁迫下棉花幼苗光合作用的影响[J]. 核农学报, 2016, 30(9): 1864-1871. |
WANG L H, ZHANG J S, LI X X, et al. Effects of exogenous salicylic acid on the photosynthesis of cotton seedlings under salt stress[J]. J Nucl Agric Sci, 2016, 30(9): 1864-1871. DOI:10.11869/j.issn.100-8551.2016.09.1864. | |
[10] | 张志刚, 尚庆茂. 水杨酸、壳聚糖对盐胁迫下黄瓜叶片光合参数的调节作用[J]. 西北农业学报, 2010, 19(3): 174-178. |
ZHANG Z G, SHANG Q M. Regulation of salicylic acid and chitosan on photosynthetic parameters of cucumber leaves under salt stress[J]. Acta Agric Boreali Occidentalis Sin, 2010, 19(3): 174-178. DOI:10.3969/j.issn.1004-1389.2010.03.037. | |
[11] | LI T T, HU Y Y, DU X H, et al. Salicylic acid alleviates the adverse effects of salt stress in Torreya grandis cv. merrillii seedlings by activating photosynthesis and enhancing antioxidant systems[J]. Plos One, 2014, 9(10):e209492. DOI:10.1371/journal.pone.0109492. |
[12] | 杨策. 融雪剂等环境因素对银杏叶斑病的影响[D]. 大连: 辽宁师范大学, 2015. |
YANG C. Effects of deicing salt and other environmental factors on gingko leaf spot[D]. Dalian: Liaoning Normal University, 2015. | |
[13] | 赵海燕. 银杏幼树耐盐生理机制的研究[D]. 北京: 北京林业大学, 2020. |
ZHAO H Y. Physiological mechanism in salt tolerance of Ginkgo biloba L. seedlings[D]. Beijing: Beijing Forestry University, 2020. DOI: 10.26949/d.cnki.gblyu.2020.001482. | |
[14] | ZHAO H Y, LIANG H Y, CHU Y B, et al. Effects of salt stress on chlorophyll fluorescence and the antioxidant system in Ginkgo biloba L. seedlings[J]. Hortscience, 2019, 54(12): 2125-2133. DOI: 10.21273/HORTSCI14432-19. |
[15] | XIN Y, WU Y Q, HAN X, et al. Overexpression of the Ginkgo biloba WD40 gene GbLWD1-like improves salt tolerance in transgenic populus[J]. Plant Sci, 2021(2): 313-320. DOI:10.1016/j.plantsci.2021.111092. |
[16] | 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006: 75-76. |
GAO J F. Experimental guidance for plant physiology[M]. Beijing: Higher Education Press, 2006: 75-76. | |
[17] | 李晓庆, 王星斗, 樊艳, 等. 盐胁迫对杜梨吸收根生长指标的影响[J]. 山西农业大学学报(自然科学版), 2021, 41(5): 62-67. |
LI X Q, WANG X D, FAN Y, et al. Effects of salt stress on the growth index of absorbing roots of Pyrus betulifolia[J]. J Shanxi Agric Univ (Nat Sci Ed), 2021, 41(5): 62-67. DOI:10.13842/j.cnki.issn1671-8151.202105048. | |
[18] | 芦治国, 华建峰, 殷云龙, 等. 盐胁迫下氮素形态对海滨木槿幼苗生长及生理特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 91-98. |
LU Z G, HUA J F, YIN Y L, et al. Effects of nitrogen form on growth and physiological characteristics of Hibiscus hamabo under salt stress[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(3): 91-98. DOI:10.12302/j.issn.1000-2006.202105010. | |
[19] | 教忠意. 盐胁迫对苦楝育苗及生理特性的影响[D]. 南京: 南京林业大学, 2009. |
JIAO Z Y. Effect of salt stress on raising seedling and physiological characteristics of Melia azedarace L.[D]. Nanjing: Nanjing Forestry University, 2009. | |
[20] | 赵春旭. 水杨酸对高羊茅草坪草抗旱性的影响[D]. 兰州: 兰州大学, 2011. |
ZHAO C X. The effects of salicylic acid (SA) on drought resistance of tall fescue (Festuca arundinacea)[D]. Lanzhou: Lanzhou University, 2011. | |
[21] | MAKINO A. Photosynthesis, grain yield, and nitrogen utilization in rice and wheat[J]. Plant Physiol, 2011, 155(1): 125-129. DOI:10.1104/pp.110.165076. |
[22] | 王伟华, 张希明, 闫海龙, 等. 盐处理对多枝柽柳光合作用和渗调物质的影响[J]. 干旱区研究, 2009, 26(4): 561-568. |
WANG W H, ZHANG X M, YAN H L, et al. Effects of salt stress on photosynthesis and osmoregulation substances of Tamarix ramosissima Ledeb[J]. Arid Zone Res, 2009, 26(4): 561-568. DOI:10.13866/j.azr.2009.04.003. | |
[23] | 李学孚, 倪智敏, 吴月燕, 等. 盐胁迫对‘鄞红’葡萄光合特性及叶片细胞结构的影响[J]. 生态学报, 2015, 35(13): 4436-4444. |
LI X F, NI Z M, WU Y Y, et al. Effects of salt stress on photosynthetic characteristics and leaf cell structure of ‘Yinhong’ grape seedlings[J]. Acta Ecol Sin, 2015, 35(13): 4436-4444. DOI:10.5846/stxb201409141821. | |
[24] | 刘兵, 贾旭梅, 朱祖雷, 等. 盐碱胁迫对垂丝海棠光合作用及渗透调节物质的影响[J]. 西北植物学报, 2019, 39(9): 1618-1626. |
LIU B, JIA X M, ZHU Z L, et al. Effect of saline-alkali on photosynthesis and osmotic regulation substances of Malus halliana Koehne[J]. Acta Bot Boreali-Occidentalia Sin, 2019, 39(9): 1618-1626. DOI:10.7606/j.issn.1000-4025.2019.09.1618. | |
[25] | VELOSOLLDA, DE LIMA G S, DA SILVA AAR, et al. Attenuation of salt stress on the physiology and production of bell peppers by treatment with salicylic acid[J]. Semina-cienc Agrar, 2021, 42(5): 2751-2768. DOI:10.5433/1679-0359.2021v42n5p2751. |
[26] | 王旭明, 赵夏夏, 周鸿凯, 等. NaCl胁迫对不同耐盐性水稻某些生理特性和光合特性的影响[J]. 热带作物学报, 2019, 40(5): 882-890. |
WANG X M, ZHAO X X, ZHOU H K, et al. Effects of NaCl stress on some physiological and biochemical indices and photosynthetic physiology characteristics of rice cultivars with different salt tolerance[J]. Chin J Trop crops, 2019, 40(5): 882-890. DOI:10.3969/j.issn.1000-2561.2019.05.008. | |
[27] | ALINIAEIFARD S, HAJILOU J, TABATABAEI S J. Photosynthetic and growth responses of olive to proline and salicylic acid under salinity condition[J]. Not Bot Horti Agrobo, 2016, 44(2):579-585. DOI:10.15835/nbha44210413. |
[28] | XUE F L, LIU W L, CAO H L, et al. Stomatal conductance of tomato leaves is regulated by both abscisic acid and leaf water potential under combined water and salt stress[J]. Physiol Plant, 2021, 172(4): 2070-2078. DOI:10.1111/ppl.13441. |
[29] | 蔡琪琪, 王堽, 董寅壮, 等. 不同中性盐胁迫对甜菜幼苗光合作用和抗氧化酶系统的影响[J]. 作物杂志, 2022 (1): 130-136. |
CAI Q Q, WANG G, DONG Y Z, et al. Effects of different neutral salt stress on photosynthesis and antioxidant enzyme system of sugar beet seedlings[J]. Crops, 2022(1): 130-136. DOI:10.16035/j.issn.1001-7283.2022.01.019. | |
[30] | 王立红, 李星星, 孙影影, 等. NaCl胁迫下外源水杨酸对棉花幼苗叶片光合特性的影响[J]. 干旱区研究, 2017, 34(3): 655-662. |
WANG L H, LI X X, SUN Y Y, et al. Effects of exogenous salicylic acid on photosynthetic characteristics of cotton seedlings leaves under salt stress[J]. Arid Zone Res, 2017, 34(3): 655-662. DOI:10.13866/j.azr.2017.03.23. | |
[31] | NAZAR R, IQBAL N, SYEEDS S, et al. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars[J]. Journal of Plant Physiol, 2011, 168(8): 807-815. DOI:10.1016/j.jplph.2010.11.001. |
[32] | LIU S, DONG Y J, XU L L, et al. Effects of foliar applications of nitric oxide and salicylic acid on salt-induced changes in photosynthesis and antioxidative metabolism of cotton seedlings[J]. Plant Growth Regul, 2014, 73(1): 67-78. DOI:10.1007/s10725-013-9868-6. |
[33] | 董慧, 段小春, 常智慧. 外源水杨酸对多年生黑麦草耐盐性的影响[J]. 北京林业大学学报, 2015, 37(2): 128-135. |
DONG H, DUAN X C, CHANG Z H. Effect of exogenous salicylic acid on salt tolerance in perennial ryegrass[J]. Journal of Beijing For Univ, 2015, 37(2): 128-135.DOI:10.13332/j.cnki.jbfu.2015.02.001. | |
[34] | 刘莉娜, 张卫强, 黄芳芳, 等. 盐胁迫对银叶树幼苗光合特性与叶绿素荧光参数的影响[J]. 森林与环境学报, 2019, 39(6): 601-607. |
LIU L N, ZHANG W Q, HUANG F F, et al. Effects of NaCl stress on the photosynthesis and cholorophyll fluorescence of Heritiera littoralis seedlings[J]. J For and Environ, 2019, 39(6): 601-607. DOI:10.13324/j.cnki.jfcf.2019.06.006. | |
[35] | 张露, 黄巧玥, 程聪, 等. 大豆GmCLC-d1/d2基因参与盐胁迫适应过程的生理功能[J]. 南京农业大学学报, 2023, 46(6):1084-1095. |
ZHANG L, HUANG Q Y, CHENG C, et al. Physiological function of soybean GmCLC-d1/d2 gene involved in salt stress adaptation[J]. J Nanjing Agric Univ, 2023, 46(6):1084-1095.DOI: 10.7685/jnau.202210018. | |
[36] | 谢寅峰, 张千千, 刘伟龙, 等. 外源水杨酸对高氯酸盐胁迫下水花生叶绿素荧光特性的影响[J]. 环境科学学报, 2010, 30(7): 1457-1465. |
XIE Y F, ZHANG Q Q, LIU W L, et al. Effects of exogenous salicylic acid on the chlorophyll fluorescence characteristics of Alternanthera philoxeroides under perchlorate stress[J]. Acta Sci Circumstantiae, 2010, 30(7): 1457-1465. DOI:10.13671/j.hjkxxb.2010.07.017. | |
[37] | 于平, 乔飞. 渗透胁迫及信号处理对海南粗榧叶绿素荧光特性的影响[J]. 基因组学与应用生物学, 2021, 40(2): 809-816. |
YU P, QIAO F. Effects of osmotic stress and signal substance treatment on chlorophyll fluorescence characteristics of Cephalotaxus hainanensis[J]. Genom Appl Biol, 2021, 40(2): 809-816. DOI:10.13417/j.gab.040.000809. |
[1] | MA Julin, QIU Lingling, XIE Yinfeng, LÜ Qian, MA Yingli, LIANG Wenchao. Physiological regulation of 6-BA on late growth of Pseudostellaria heterophylla [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 137-144. |
[2] | LIU Juntao, JIA Liming, YAN Xiaoli, ZHANG Weihua, CAI Wanting, ZHONG Jing, WANG Lixian, CAO Qiuli, ZHAO Pengli, CHEN Yiyong, YU Jiaxin, CHEN Na, WENG Xuehuang. Effect of variations in fertilization formula on the photosynthetic characteristics and growth of young Sapindus saponaria [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 23-33. |
[3] | WU Changfeng, GUO Jing, WANG Guibin. Morphological and physiological responses of male and female Ginkgo biloba to temperature changes [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 150-158. |
[4] | WANG Gaiping, ZHANG Lei, CAO Fuliang, DING Yanpeng, ZHAO Qun, ZHAO Huiqin, WANG Zheng. Effect of red and blue light quality on growth physiological and flavonoid content of Ginkgo biloba seedlings [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 105-112. |
[5] | WANG Lulu, GENG Xingmin, HUAN Zhiqun, XU Shida, ZHAO Hui. Effects of 1-MCP pretreatment on photosynthetic characteristics and related gene expression of rhododendron seedlings under heat stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 103-113. |
[6] | WANG Mengke, YANG Xiaoming, WANG Guibin, ZHOU Tinging, GUO Ying, GUO Jing. Effects of external 24-epibrassinolide (EBR) application on the development and physiological characteristics of Ginkgo biloba leaves [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 81-87. |
[7] | LI Tingting, GUO Jing, WANG Guibin. Effects of exogenous ABA on the synthesis of flavonoids in Ginkgo biloba leaves in vivo [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 88-94. |
[8] | WANG Mengke, GUO Ying, WANG Guibin, YUAN Ke, YANG Xiaoming, GUO Jing. Effects of habitat on the synthesis and accumulation of primary metabolites in Ginkgo biloba leaves [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 121-128. |
[9] | SUN Xiaowei, WANG Xingchang, SUN Huizhen, QUAN Xiankui, YANG Qingjie. Photosynthetic characteristics of dioecious Populus davidiana, Fraxinus mandshurica and Taxus cuspidata [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 129-135. |
[10] | CHEN Bolin, WANG Guibin, GUO Qirong, WANG Jiahong, SU Erzheng, CAO Fuliang. Optimization of enzymatic hydrolysis and fermentation conditions of Ginkgo biloba wine using response surface methodology [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 135-142. |
[11] | YUAN Jingqi, YU Zhongliang, LAN Xuehan, LI Chenghong, TIAN Nianjun, DU Fengguo. Effects of shading treatments on photosynthetic characteristics of endangered plant Thuja koraiensis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 58-66. |
[12] | ZHANG Cheng, WANG Xiaoyan, WANG Xianrong, DUAN Yifan, ZHANG Min, SHI Dawei, ZHU Yue, SONG Yanfeng, CHAI Zihan, LI Lan. Photosynthesis and hormone study of male and hermaphroditic Osmanthus fragrans at different flowering stages [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 75-80. |
[13] | LI Linke, WANG Yinuo, XUE Xiao, ZHANG Wen, WU Jiaojiao, GAO Lan, TAN Xing, RONG Xingyu, DUAN Rurong, LIU Yun. Response of Cotinus coggygria photosynthesis and coloration to weather change in Chongqing [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 95-103. |
[14] | DI Jingjing, YE Wei, WU Qinxia, FENG Kai, CAO Dong, LI Qiang, CHEN Ying. Comparisons of physiological metabolism of female and male Ginkgo biloba trees during the late flower bud differentiation and flowering [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 59-67. |
[15] | YE Wei, LI Qiang, CHEN Ying, HU Fei, HU Yuchen, WU Qinxia, CAO Fuliang. Annual dynamic changes in photosynthetic physiology and flavonoid components in female, male and golden-leaf Ginkgo biloba trees [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 77-86. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||