JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (2): 12-22.doi: 10.12302/j.issn.1000-2006.202403036
Special Issue: 推进乡村全面振兴视域下的多功能油用树种文冠果研究
Previous Articles Next Articles
XU Huihui(), BAN Zhuo, WANG Chenxue, BI Quanxin, LIU Xiaojuan*(
), WANG Libing
Received:
2024-03-27
Accepted:
2024-06-25
Online:
2025-03-30
Published:
2025-03-28
Contact:
LIU Xiaojuan
E-mail:xuhuihui0206@163.com;liuxiaojuan@caf.ac.cn
CLC Number:
XU Huihui, BAN Zhuo, WANG Chenxue, BI Quanxin, LIU Xiaojuan, WANG Libing. The identification and functional analysis of BZR1 genes in yellowhorn[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 12-22.
Table 1
A list of primer sequences"
基因名称 gene name | 正向引物序列(5'—) forward primer sequence | 反向引物序列(3'—) reverse primer sequence | 用途 application |
---|---|---|---|
XsBZR1- 1 | CTCGGTGGCAATGAAGTT | GCAGAGAAGTTGGTTGTTG | qRT-PCR引物 |
XsBZR1- 2 | AGAAGAGAAGGAGAGGACAA | ACGATGAAGTTACCATAGCA | |
XsBZR1- 3 | ATGCGATGAGTCTGATACAT | TCCATTCCTTCCATTCCTAC | |
XsBZR1- 4 | TGTGGAGCGAATGGATATAG | AACTGGAGCACTGATGGA | |
XsBZR1- 5 | AGAAGACGGCACCACTTA | AGGACTCGGATTGTAAGATG | |
XsBZR1- 6 | CTGGTGGTGGAGGAGATT | CCGCCGTATAAGTAGAGTG | |
XsBZR1- 7 | GAGGCTGGTTGGATTGTT | CGCACTGATGTTCGTAGA | |
XsBZR1- 8 | AATGTGGTGGATGAGAAGAA | CTTGAAGCCTGGCGAATA | |
XsBZR1- 9 | CCTGTAGAGCGAATGGATAT | AACTGGAGCACTGATGGA | |
XsActin | AGAGATTCCGTTGCCCAGAA | CCACCACTGAGCACAATGTT | |
AtActin | TTACCCGATGGGCAAGTC | GCTCATACGGTCAGCGATAC | |
XsBZR1- 1 | ATGATTACAATCAGCAACAT | AGCCAGCAGATCGCCCACTA | XsBZR1 基因克隆引物 |
XsBZR1- 2 | ATGGCAACAGATATGCAGAA | CACCTGGAGATCAAGAACTG | |
XsBZR1- 3 | ATGACGTCTGATGGGGCGAC | ACCCTGAGTCTTCCCAGTTC | |
XsBZR1- 4 | ATGACGTCAGGATCGAGACT | GCCAGAAAGCCGCTGCCTAC | |
XsBZR1- 5 | ATGACGTCGGGTACGAGAAT | TCTGGTTTTAGAGTTTCCCA | |
XsBZR1- 6 | ATGTTTCCAATCAGAAAATT | TATTGTACGGCGTGGAGGAG | |
XsBZR1- 7 | ATGACAGCGGGAGGATCAGG | TCCGCGCGTCTTGGTACTAC | |
XsBZR1- 8 | ATGGGGAAAGAGAATGTGGT | GTCTTCATCTCCTGATTGAT | |
XsBZR1- 9 | ATGACGTCAGGATCGAGGTT | CCTGGTCCTTGAGCTCCCAA |
Table 2
XsBZR1 gene family and encoding protein properities"
基因名称 gene name | 基因ID gene ID | 蛋白序列 长度/aa length | 分子质量 /ku molecular weight | 等电点 pI | 总平均 疏水指数 GRAVY | 保守结构域 domain | 亚细胞号 subcellular localization | 染色体号 chromosome No. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
XsBZR1-1 | Xsorbifolium001562.1 | 653 | 73.73 | 5.62 | -0.403 | BES1_N Glyco_hydro_14 | 细胞核 | 1 | ||||||||
XsBZR1-2 | Xsorbifolium002147.2 | 702 | 78.46 | 5.40 | -0.364 | BES1_N Glyco_hydro_14 | 细胞核 | 1 | ||||||||
XsBZR1-3 | Xsorbifolium010436.1 | 316 | 34.45 | 8.39 | -0.601 | BES1_N | 细胞核 | 6 | ||||||||
XsBZR1-4 | Xsorbifolium011852.2 | 341 | 36.84 | 8.59 | -0.579 | BES1_N | 细胞核 | 7 | ||||||||
XsBZR1-5 | Xsorbifolium012965.1 | 327 | 34.96 | 8.60 | -0.627 | BES1_N | 细胞核 | 7 | ||||||||
XsBZR1- 6 | Xsorbifolium013243.1 | 226 | 23.89 | 10.21 | -0.365 | BES1_N | 细胞核 | 7 | ||||||||
XsBZR1- 7 | Xsorbifolium015469.1 | 328 | 35.46 | 8.58 | -0.547 | BES1_N | 细胞核 | 9 | ||||||||
XsBZR1- 8 | Xsorbifolium019507.1 | 136 | 15.89 | 9.59 | -1.113 | BES1_N | 细胞核 | 12 | ||||||||
XsBZR1- 9 | Xsorbifolium024342.1 | 325 | 35.05 | 8.94 | -0.619 | BES1_N | 细胞核 | 15 |
[20] | MA Y X. Variation of seed characteristics and selection of superior rootstock provenance of Xanthoceras sorbifolia Bunge[D]. Hohhot: Inner Mongolia Agricultural University, 2021.DOI: 10.27229/d.cnki.gnmnu.2021.000047. |
[21] | 刘志. 文冠果WRKY转录因子家族的鉴定及非生物胁迫响应模式分析[D]. 哈尔滨: 东北林业大学, 2020. |
LIU Z. Identification of WRKY transcription factor family in Xanthoceras sorbifolia Bunge and analysis of abiotic stress response pattern[D].Harbin: Northeast Forestry University, 2020.DOI: 10.27009/d.cnki.gdblu.2020.000390. | |
[22] | 常巧颖. 文冠果bZIP转录因子家族鉴定和非生物胁迫应答模式分析[D]. 哈尔滨: 东北林业大学, 2020. |
CHANG Q Y. Identification of bZIP transcription factor family in Xanthoceras sorbifolia Bunge and analysis of abiotic stress response pattern[D].Harbin: Northeast Forestry University, 2020.DOI: 10.27009/d.cnki.gdblu.2020.000536. | |
[23] | 杨娟, 姜阳明, 周芳, 等. PEG模拟干旱胁迫对不同抗旱性玉米品种苗期形态与生理特性的影响[J]. 作物杂志, 2021(1):82-89. |
YANG J, JIANG Y M, ZHOU F, et al. Effects of PEG simulated drought stress on seedling morphology and physiological characteristics of different drought-resistance maize varieties[J]. Crops, 2021(1):82-89.DOI:10.16035/j.issn.1001-7283.2021.01.012. | |
[24] | BI Q X, WANG M K, LI J, et al. The phased chromosome-scale genome of yellowhorn sheds light on the mechanism of petal color change[J]. Hortic Plant J, 2023, 9(6):1193-1206.DOI:10.1016/j.hpj.2023.05.010. |
[25] | LANG Y H, LIU Z. Basic Helix-Loop-Helix (bHLH) transcription factor family in Yellow horn (Xanthoceras sorbifolia Bunge):genome-wide characterization,chromosome location,phylogeny,structures and expression patterns[J]. Int J Biol Macromol, 2020, 160:711-723.DOI:10.1016/j.ijbiomac.2020.05.253. |
[26] | 周晔, 赵璇, 王璐, 等. 植物BZR家族基因调控非生物胁迫应答和生长发育的研究进展[J]. 中国油料作物学报, 2020, 42(4):499-511. |
ZHOU Y, ZHAO X, WANG L, et al. Research advances on plant BZR family genes in regulating abiotic stress response and development[J]. Chin J Oil Crop Sci, 2020, 42(4):499-511.DOI:10.19802/j.issn.1007-9084.2020163. | |
[27] | 王黎明, 杨瑞珍, 孙加强. 油菜素内酯调控作物农艺性状和非生物胁迫响应的研究进展[J]. 生物工程学报, 2022, 38(1):34-49. |
WANG L M, YANG R Z, SUN J Q. Regulation of crop agronomic traits and abiotic stress responses by brassinosteroids:a review[J]. Chin J Biotechnol, 2022, 38(1):34-49.DOI:10.13345/j.cjb.210236. | |
[28] | YANG J, WU Y, LI L, et al. Comprehensive analysis of the BES1 gene family and its expression under abiotic stress and hormone treatment in Populus trichocarpa[J]. Plant Physiol Biochem, 2022, 173:1-13.DOI:10.1016/j.plaphy.2022.01.019. |
[29] | 尹魁林, 程莎莎, 艾长丰, 等. 枣BZR基因家族的鉴定及其在果实发育中的表达分析[J/OL]. 分子植物育种:1-13[2024-03-26]. |
YIN K L, CHENG S S, AI C F, et al. Genome-wide identification of ZjBZR gene family and expression analysis in jujube fruit[J/OL]. Molecular Plants Breeding:1-13. [2024-03-26]. . | |
[30] | FENG W Q, ZHANG H, CAO Y, et al. Maize ZmBES1/BZR1-1 transcription factor negatively regulates drought tolerance[J]. Plant Physiol Biochem, 2023,205:108188.DOI:10.1016/j.plaphy.2023.108188. |
[31] | 明川. 玉米BES1/BZR1转录因子基因鉴定[D]. 雅安: 四川农业大学, 2019. |
MING C. Identification of transcription factor gene BES1/BZR1 in maize[D]. Ya’an: Sichuan Agricultural University, 2019.DOI: 10.27345/d.cnki.gsnyu.2019.000495. | |
[32] | SAHA G, PARK J I, JUNG H J, et al. Molecular characterization of BZR transcription factor family and abiotic stress induced expression profiling in Brassica rapa[J]. Plant Physiol Biochem, 2015, 92:92-104.DOI:10.1016/j.plaphy.2015.04.013. |
[33] | 杜巧丽, 刘均霞, 陈美晴, 等. 高粱BR信号转录因子BZR1基因家族的鉴定及激素应答分析[J]. 植物保护学报, 2022, 49(3):848-856. |
DU Q L, LIU J X, CHEN M Q, et al. Identification of Sorghum BR signal transcription factor BZR1 gene family and analysis of hormone response[J]. J Plant Prot, 2022, 49(3):848-856.DOI:10.13802/j.cnki.zwbhxb.2022.2020206. | |
[1] | YANG Y Z, CHU C C, QIAN Q, et al. Leveraging brassinosteroids towards the next green revolution[J]. Trends Plant Sci, 2024, 29(1):86-98.DOI:10.1016/j.tplants.2023.09.005. |
[2] | 王孟珂, 杨晓明, 汪贵斌, 等. 外施24-表油菜素内酯(EBR)对银杏叶片发育和生理特征影响[J]. 南京林业大学学报(自然科学版), 2023, 47(4):81-87. |
WANG M K, YANG X M, WANG G B, et al. Effects of external 24-epibrassinolide (EBR) application on the development and physiological characteristics of Ginkgo biloba leaves[J]. J Nanjing For Univ (Nat Sci Ed), 2023, 47(4):81-87.DOI:10.12302/j.issn.1000-2006.202109026. | |
[3] | NOLAN T M, VUKAŠINOVIĆ N, LIU D R, et al. Brassinosteroids:multidimensional regulators of plant growth,development,and stress responses[J]. Plant Cell, 2020, 32(2):295-318.DOI:10.1105/tpc.19.00335.. |
[4] | SHE J, HAN Z F, KIM T W, et al. Structural insight into brassinosteroid perception by BRI1[J]. Nature, 2011, 474(7352):472-476.DOI:10.1038/nature10178. |
[5] | NAM K H, LI J M. BRI1/BAK1,a receptor kinase pair mediating brassinosteroid signaling[J]. Cell, 2002, 110(2):203-212.DOI:10.1016/s0092-8674(02)00814-0. |
[6] | WANG Z Y, NAKANO T, GENDRON J, et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis[J]. Dev Cell, 2002, 2(4):505-513.DOI:10.1016/s1534-5807(02)00153-3. |
[7] | NOSAKI S, MIYAKAWA T, XU Y Q, et al. Structural basis for brassinosteroid response by BIL1/BZR1[J]. Nat Plants, 2018, 4(10):771-776.DOI:10.1038/s41477-018-0255-1. |
[8] | SUN Y, FAN X Y, CAO D M, et al. Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis[J]. Dev Cell, 2010, 19(5):765-777.DOI:10.1016/j.devcel.2010.10.010. |
[9] | YU X F, LI L, ZOLA J, et al. A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana[J]. Plant J, 2011, 65(4):634-646.DOI:10.1111/j.1365-313X.2010.04449.x. |
[10] | REINHOLD H, SOYK S, SIMKOVÁ K, et al. β-amylase-like proteins function as transcription factors in Arabidopsis,controlling shoot growth and development[J]. Plant Cell, 2011, 23(4):1391-1403.DOI:10.1105/tpc.110.081950. |
[34] | WANG D Z, ZUO J H, LIU S, et al. BRI1 EMS SUPPRESSOR1 genes regulate abiotic stress and anther development in wheat (Triticum aestivum L.)[J]. Front Plant Sci, 2023,14:1219856.DOI:10.3389/fpls.2023.1219856. |
[35] | 陈旭, 沈春洋, 莫福磊, 等. 番茄BZR基因家族鉴定及非生物胁迫下表达模式分析[J]. 东北农业大学学报, 2021, 52(11):9-17. |
CHEN X, SHEN C Y, MO F L, et al. Identification of BZR gene family in tomato and expression patterns analysis under abiotic stress[J]. J Northeast Agric Univ, 2021, 52(11):9-17.DOI:10.19720/j.cnki.issn.1005-9369.2021.11.002. | |
[36] | AN S M, LIU Y, SANG K Q, et al. Brassinosteroid signaling positively regulates abscisic acid biosynthesis in response to chilling stress in tomato[J]. J Integr Plant Biol, 2023, 65(1):10-24.DOI:10.1111/jipb.13356. |
[37] | ZUO C L, ZHANG L, YAN X Y, et al. Evolutionary analysis and functional characterization of BZR1 gene family in celery revealed their conserved roles in brassinosteroid signaling[J]. BMC Genomics, 2022, 23(1):568.DOI:10.1186/s12864-022-08810-3. |
[38] | LUO S L, ZHANG G B, ZHANG Z Y, et al. Genome-wide identification and expression analysis of BZR gene family and associated responses to abiotic stresses in cucumber (Cucumis sativus L.)[J]. BMC Plant Biol, 2023, 23(1):214.DOI:10.1186/s12870-023-04216-9. |
[39] | LI Y Y, HE L L, LI J, et al. Genome-wide identification,characterization,and expression profiling of the legume BZR transcription factor gene family[J]. Front Plant Sci, 2018,9:1332.DOI:10.3389/fpls.2018.01332. |
[40] | CHEN X W, WU X Y, QIU S Y, et al. Genome-wide identification and expression profiling of the BZR transcription factor gene family in Nicotiana benthamiana[J]. Int J Mol Sci, 2021, 22(19):10379.DOI:10.3390/ijms221910379. |
[41] | LI H, YE K Y, SHI Y T, et al. BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis[J]. Mol Plant, 2017, 10(4):545-559.DOI:10.1016/j.molp.2017.01.004. |
[42] | LIU J L, YANG R C, JIAN N, et al. Putrescine metabolism modulates the biphasic effects of brassinosteroids on canola and Arabidopsis salt tolerance[J]. Plant Cell Environ, 2020, 43(6):1348-1359.DOI:10.1111/pce.13757. |
[43] | WANG X X, CHEN X D, WANG Q J, et al. MdBZR1 and MdBZR1-2 like transcription factors improves salt tolerance by regulating gibberellin biosynthesis in apple[J]. Front Plant Sci, 2019,10:1473.DOI:10.3389/fpls.2019.01473. |
[11] | YIN Y H, VAFEADOS D, TAO Y, et al. A new class of transcription factors mediates brassinosteroid: regulated gene expression in Arabidopsis[J]. Cell, 2005, 120(2):249-259.DOI:10.1016/j.cell.2004.11.044. |
[12] | THALMANN M, COIRO M, MEIER T, et al. The evolution of functional complexity within the β-amylase gene family in land plants[J]. BMC Evol Biol, 2019, 19(1):66.DOI:10.1186/s12862-019-1395-2. |
[13] | 沈春洋. 番茄BZR基因家族生物信息学分析及抗逆基因功能鉴定[D]. 哈尔滨: 东北农业大学, 2022. |
SHEN C Y. Bioinformatics analysis of tomato BZR gene family and functional identification of stress-resistant genes[D].Harbin: Northeast Agricultural University, 2022.DOI: 10.27010/d.cnki.gdbnu.2022.000291. | |
[14] | CAO X, KHALIQ A, LU S, et al. Genome-wide identification and characterization of the BES1 gene family in apple (Malus domestica)[J]. Plant Biol, 2020, 22(4):723-733.DOI:10.1111/plb.13109. |
[15] | CUI X Y, GAO Y, GUO J, et al. BES/BZR transcription factor TaBZR2 positively regulates drought responses by activation of TaGST1[J]. Plant Physiol, 2019, 180(1):605-620.DOI:10.1104/pp.19.00100. |
[16] | JIA C G, ZHAO S K, BAO T T, et al. Tomato BZR/BES transcription factor SlBZR1 positively regulates BR signaling and salt stress tolerance in tomato and Arabidopsis[J]. Plant Sci, 2021,302:110719.DOI:10.1016/j.plantsci.2020.110719. |
[17] | SUN Z T, LIU X Z, ZHU W D, et al. Molecular traits and functional exploration of BES1 gene family in plants[J]. Int J Mol Sci, 2022, 23(8):4242.DOI:10.3390/ijms23084242. |
[18] | ZHAO Y, LIU X J, WANG M K, et al. Transcriptome and physiological analyses provide insights into the leaf epicuticular wax accumulation mechanism in yellowhorn[J]. Hortic Res, 2021, 8(1):134.DOI:10.1038/s41438-021-00564-5. |
[19] | YU H Y, FAN S Q, BI Q X, et al. Seed morphology,oil content and fatty acid composition variability assessment in yellow horn (Xanthoceras sorbifolium Bunge) germplasm for optimum biodiesel production[J]. Ind Crops Prod, 2017, 97:425-430.DOI:10.1016/j.indcrop.2016.12.054. |
[20] | 麻云霞. 文冠果种子特性变异及优良砧用种源选择[D]. 呼和浩特: 内蒙古农业大学, 2021. |
[44] | FUJITA M, FUJITA Y, MARUYAMA K, et al. A dehydration-induced NAC protein,RD26,is involved in a novel ABA-dependent stress-signaling pathway[J]. Plant J, 2004, 39(6):863-876.DOI:10.1111/j.1365-313X.2004.02171.x. |
[45] | YE H X, LIU S Z, TANG B Y, et al. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways[J]. Nat Commun, 2017,8:14573.DOI:10.1038/ncomms14573. |
[1] | QI Ya, WANG Gaiping, XUANYUAN Xintong, PENG Daqing, LI Shuomin, LI Shouke, CAO Fuliang. Evaluation of medicinal asexual strains of Xanthoceras sorbifolium [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 38-44. |
[2] | CHEN Shengkan, GUO Dongqiang, DENG Ziyu, TANG Qinglan, LIAO Changkun, YANG Zhiwang, ZHU Yuanli, LI Changrong. Stability evaluation on tree height for introduced provenances of Corymbia citriodora subsp. variegata [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 67-74. |
[3] | YAO Junxiu, REN Fei, WANG Yinhua, LI Qinghua, YAN Liping, ZHENG Yan, WU Dejun. Genetic diversity of germplasm resources of Sambucus based on SSR fluorescent marker [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 75-82. |
[4] | KE Xin, FEI Qi, XIA Xinrui, YE Jianren, ZHU Lihua. The factors influencing the embryogenic callus initiation and somatic embryo yield in Pinus elliottii resistant to pine needle brown spot disease [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 87-94. |
[5] | LIN Qiang, XU Jin, LI Shangqian, LIN Yunbin, ZHANG Yunqing, OUYANG Lei. The early selection and analysis of genetic variation of Cryptomeria japonica half-sib progeny from seed orchard in Fuding, Fujian Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 78-86. |
[6] | JIANG Bo, AN Xinmin. Precise genomic editing technology and its application in the improvement of woody plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 11-20. |
[7] | ZHANG Weixi, DING Mi, SU Xiaohua, LI Aiping, WANG Xiaojiang, YU Jinjin, LI Zhenghong, HUANG Qinjun, DING Changjun. Heterosis and drought resistance assessment of Populus simonii × P. nigra F1 hybrids based on growth traits and leaf anatomical structures [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 46-58. |
[8] | YANG Yuanmu, LI Na, CHEN Xinyu, XU Fang, PAN Wen, ZHANG Weihua. Study on wood variation of provenances and clones of Castanopsis hystrix [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 41-50. |
[9] | YAN Pingyu, ZHANG Lei, WANG Jiaxing, FENG Kele, WANG Haohao, ZHANG Hanguo. Analysis of genetic diversity and construction of core collections of Korean pine (Pinus koraiensis) natural population [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 69-80. |
[10] | WANG Jiaxing, YAN Pingyu, SUN Baifei, LIU Jinhong, FENG Kele, ZHANG Hanguo. Growth variation and superior families early selection of Larix olgensis free-pollinated families [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 81-89. |
[11] | KUANG Zeyu, PENG Ye, FANG Yanming. Effects of volatile organic components of Ilex rotunda on its insect pollinator, Apis cerana [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 254-260. |
[12] | LIU Li, QU Yinquan, YU Yanhao, WANG Qian, FU Xiangxiang. Analysis of SSR locus based on the whole genome sequences of Cyclocarya paliurus and the development of polymorphic primers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 67-75. |
[13] | LIU Xialan, SONG Ziqi, HU Fengrong, SHANG Xulan. A comparative study on leaf characters between diploid and tetraploid of Cyclocarya paliurus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 76-84. |
[14] | MA Tan, TIAN Ye, WANG Shujun, LI Wenhao, DUAN Qiying, ZHANG Qingyuan. Sex-specific leaf physiological responses of southern-type poplar to short-term intermittent soil drought [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 172-180. |
[15] | WANG Gaiping, ZHANG Lei, CAO Fuliang, DING Yanpeng, ZHAO Qun, ZHAO Huiqin, WANG Zheng. Effect of red and blue light quality on growth physiological and flavonoid content of Ginkgo biloba seedlings [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 105-112. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||