[1] 管泽霖,宁津生.地球形状与外部重力场[M].北京:测绘出版社, 1981. [2] 李娜,章传银.用逆Vening-Meinesz公式反演海洋重力场时积分半径的选择[J].大地测量与地球动力学,2009,29(6):126-129.Li N,Zhang C Y.Option of integral radius in inversion of sea gravity with inverse Vening-Meinesz formula[J].Journal of Geodesy and Geodynamics,2009,29(6):126-129. [3] 楼立志,方剑,许厚泽.界面起伏对模拟大地水准面的影响[J].同济大学学报:自然科学版,2006,34(6):848-852.Lou L Z,Fang J,Xu H Z.Effects of interface undulations on simulated geoid[J].Journal of Tongji University:Natural Sciences Edition,2006,34(6):848-852. [4] 翟振和,孙中苗.海面高数据与平均重力异常误差传播的球谐分析[J].大地测量与地球动力学,2010,30(2):137-140.Zhai Z H,Sun Z M.Spherical harmonic analysis of error propagation between mean gravity anomaly and sea surface height data[J]. Journal of Geodesy and Geodynamics,2010,30(2):137-140. [5] 王增利,文琳. 一种地形改正新算法[J].大地测量与地球动力学,2011,31(3):115-119. Wang Z L,Wen L.A new terrain correction method[J]. Journal of Geodesy and Geodynamics,2011,31(3):115-119. [6] 罗志才,陈永奇,宁津生.地形对确定高精度局部大地水准面的影响[J].武汉大学学报:信息科学版,2003,28(3):340-344.Luo Z C,Chen Y Q,Ning J S.Effect of terrain on the determination of high precise local gravimetric geoid[J]. Geomatics and Information Science of Wuhan University,2008,28(3):340-344. [7] 丁剑.高精度似大地水准面精化中若干问题研究[D].北京:中国测绘科学研究院,2006.Ding J.Investigations on some problems in high-precision quasi-geoid determination[D]. Beijing:Institute of Geodesy and Geodynamics, Chinese Academy of Surveying and Mapping,2006. [8] Kiamehr R, Sjoberg L E. Effect of the SRTM global DEM on the determination of a high-resolution geoid model: a case study in Iran[J].J Geoid,2005,79:540-551. [9] Abd-Elmotaal H A, Kuhtreiber N. Geoid determination using adapted reference field,seisc Moho depths and variable density contrast[J].Journal of Geodesy,2003,77:77-85. [10] Merry C L. DEM-induced errors in developoing a quasi-geoid model for Africa[J]. Journal of Geodesy,2003,77:537-542. [11] ESjoberg L. A computational scheme to model the geoid by the modified Stokes formula without gravity reductions[J].Journal of Geodesy,2003,77:423-432. [12] ESjoberg L. A spherical harmonic representation of the ellipsoidal correction to the modified Stokes formula[J].Journal of Geodesy,2004,78:180-186. [13] Sun W,ESjoberg L. Convergence and optimal truncation of binomial expansions used in isostatic compensations and terrain corrections[J].Journal of Geodesy, 2001,74:627-636. [14] ESjoberg L, Nahavandchi H. On the indirect effect in the Stokes-Helmert method of geoid determination[J].Journal of Geodesy,1999,73:87-93. [15] Nahavandchi H, ESjoberg L. Terrain corrections to power H3 in gravimetric geoid determination[J].Journal of Geodesy,1998,72:124-135. |