[1] Tichy A, Salovska B, Rehulka P, et al. Phosphoproteomics: searching for a needle in a haystack[J]. Journal of Proteomics, 2011, 74(12):2786-2797. [2] Qu Y, Wu S, Zhao R, Zink E, et al. Automated immobilized metal affinity chromatography system for enrichment of Escherichia coli phosphoproteome[J]. Electrophoresis, 2013, 34(11):1619-1626. [3] Schroeder M J, Shabanowitz J, Schwartz J C, et al. A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry[J]. Analytical Chemistry, 2004, 76(13):3590-3598. [4] Csar X F, Wilson N J, Strike P, et al. Copper/zinc superoxide dismutase is phosphorylated and modulated specifically by granulocyte-colony stimulating factor in myeloid cells[J]. Proteomics, 2001, 1(3):435-443. [5] Imamura H, Wakabayashi M, Ishihama Y. Analytical strategies for shotgun phosphoproteomics: status and prospects [J]. Seminars in Cell &Developmental Biology, 2012, 23(8):836-842. [6] Nuhse T S, Stensballe A, Jensen O N, et al. Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry[J]. Molecular & Cellular Proteomics, 2003, 2(11):1234-1243. [7] Beausoleil S A, Jedrychowski M, Schwartz D, et al. Large-scale characterization of HeLa cell nuclear phosphoproteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(33):12130-12135. [8] Thingholm T E, Jensen O N, Larsen M R. Analytical strategies for phosphoproteomics[J]. Proteomics, 2009, 9(6):1451-1468. [9] Trinidad J C, Specht C G, Thalhammer A, et al. Comprehensive identification of phosphorylation sites in postsynaptic density preparations[J]. Molecular & Cellular Proteomics, 2006, 5(5):914-922. [10] Hennrich M L, Groenewold V, Kops G J P L, et al. Improving depth in phosphoproteomics by using a strong cation exchange-weak anion exchange-reversed phase multidimensional separation approach[J]. Analytical Chemistry, 2011, 83(18):7137-7143. [11] Alpert A J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds[J]. Journal of chromatography, 1990, 499:177-196. [12] Nilsson C L. Advances in quantitative phosphoproteomics[J]. Analytical Chemistry, 2012, 84(2):735-746. [13] McNulty D E, Annan R S. Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection[J]. Molecular & Cellular Proteomics, 2008, 7(5):971-980 [14] Singer D, Kuhlmann J, Muschket M, et al. Separation of multiphosphorylated peptide isomers by hydrophilic interaction chromatography on an aminopropyl phase[J]. Analytical Chemistry, 2010, 82(15):6409-6414. [15] Boersema P J, Mohammed S, Heck A J R. Hydrophilic interaction liquid chromatography(HILIC)in proteomics[J]. Analytical and Bioanalytical Chemistry, 2008, 391(1):151-159. [16] Buszewski B, Noga S. Hydrophilic interaction liquid chromatography(HILIC)—a powerful separation technique[J]. Analytical and Bioanalytical Chemistry, 2012,402(1):231-247. [17] Dunn J D, Reid G E, Bruening M L. Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry[J]. Mass Spectrometry Reviews, 2010, 29(1):29-54. [18] Novotna L, Hruby M, Benes M J, et al. Immobilized metal affinity chromatography of phosphorylated proteins using high performance sorbents [J]. Chromatographia, 2008, 68(5-6):381-386. [19] Barnouin K N, Hart S R, Thompson A J, et al. Enhanced phosphopeptide isolation by Fe(III)-IMAC using 1,1,1,3,3,3-hexafluoroisopropanol[J]. Proteomics, 2005, 5(17):4376-4388. [20] Kersten B, Agrawal G K, Durek P, et al. Plant phosphoproteomics: An update[J]. Proteomics, 2009, 9(4):964-988. [21] Dubrovska A,Souchelnytskyi S. Efficient enrichment of intact phosphorylated proteins by modified immobilizes metal-affinity chromatography [J]. Proteomics, 2005, 5(18):4678-4683. [22] Kosako H,Nagano K. Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways[J]. Expert Review of Proteomics, 2011, 8(1):81-94. [23] Zhou H, Ye M, Dong J, et al. Robust phosphoproteome enrichment using monodisperse microsphere-based immobilized titanium(IV)ion affinity chromatography[J]. Nature Protocols, 2013, 8(3):461-480. [24] Larsen M R, Thingholm T E, Jensen O N, et al. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns [J]. Molecular & Cellular Proteomics, 2005, 4(7):873-886 [25] Richardson B M J, Soderblom E J, Thompson J W, et al. Automated, reproducible, titania-based phosphopeptide enrichment strategy for label-free quantitative phosphoproteomics [J]. Journal of Biomolecular Techniques 2013, 24(1):8-16. [26] Connor P A. McQuillan A J. Phosphate adsorption onto TiO2 from aqueous solutions: an in situ internal reflection infrared spectroscopic study[J]. Langmuir, 1999,15(8): 2916-2921. [27] Eyrich B, Sickmann A, Zahedi R P. Catch me if you can: Mass spectrometry-based phosphoproteomics and quantification strategies [J]. Proteomics, 2011, 11(4):554-570. [28] Rosenqvist H, Ye J,Jensen O N. Analytical strategies in mass spectrometry-based phosphoproteomics[J]. Methods in Molecular Biology, 2009, 753:183-213. [29] Kersten B, Agrawal G K, Iwahashi H, et al. Plant phosphoproteomics: A long road ahead [J]. Proteomics, 2006, 6(20):5517-5528. [30] Sugiyama N, Masuda T, Shinoda K, et al. Phosphopeptide enrichment by aliphatic hydroxy acid-modified metal oxide chromatography for nano-LC-MS/MS in proteomics applications[J]. Molecular & Cellular Proteomics, 2007, 6(6):1103-1109. [31] Bodenmiller B, Mueller L N, Mueller M, et al. Reproducible isolation of distinct, overlapping segments of the phosphoproteome[J]. Nature Methods, 2007, 4(3): 231-237. [32] Jensen S S, Larsen M R. Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques[J]. Rapid Communications in Mass Spectrometry, 2007, 21(22):3635-3645. [33] Rosenqvist H, Ye J, Jensen O N. Analytical strategies in mass spectrometry-based phosphoproteomics[C]//Gel-Free Proteomics. New York:Humana Press, 2011: 183-213. [34] Thingholm T E, Jensen O N, Robinson P J,et al. SIMAC(sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides[J]. Molecular & Cellular Proteomics, 2008, 7(4):661-671. [35] Thingholm T E, Jensen O N, Larsen M R. Enrichment and separation of mono-and multiply phosphorylated peptides using sequential elution from IMAC prior to mass spectrometric analysis [J]. Methods in Molecular Biology, 2009, 527:67-78. [36] Mamone G, Picariello G, Ferranti P, et al. Hydroxyapatite affinity chromatography for the highly selective enrichment of mono-and multi-phosphorylated peptides in phosphoproteome analysis[J]. Proteomics, 2010, 10(3):380-393. [37] Pinto G, Caira S, Cuollo M, et al. Hydroxyapatite as a concentrating probe for phosphoproteomic analyses[J]. Journal of Chromatography B, 2010, 878(28):2669-2678. [38] Fíla J, Honys D. Enrichment techniques employed in phosphoproteomics[J]. Amino Acids, 2012, 43(3):1025-1047. [39] Shibata M, Yamakawa Y, Ohoka T, et al. Characterization of a 64-kd protein phosphorylated during chemotactic activation with IL-8 and fMLP of human polymorphonuclear leukocytes. II. Purification and amino acid analysis of phosphorylated 64-kd protein[J]. Journal of Leukocyte Biology, 1993, 54(1):10-16. [40]Salovska B, Tichy A, Rezacova M,et al. Enrichment strategies for phosphoproteomics: state-of-the-art[J]. Reviews in Analytical Chemistry, 2012, 31(1):29-41. [41] Krenkova J,Foret F. Nanoparticle-modified monolithic pipette tips for phosphopeptide enrichment[J]. Analytical and Bioanalytical Chemistry, 2013, 405(7):2175-2183. [42] Fonslow B R, Niessen S M, Singh M,et al. Single-step inline hydroxyapatite enrichment facilitates identification and quantitation of phosphopeptides from mass-limited proteomes with MudPIT[J]. Journal of Proteome Research, 2012, 11(5): 2697-2709. [43] Krenkova J, Lacher N A, Svec F. Control of selectivity via nanochemistry: monolithic capillary column containing hydroxyapatite nanoparticles for separation of proteins and enrichment of phosphopeptides[J]. Analytical Chemistry, 2010, 82(19):8335-8341. [44] Yu Q, Li X S, Yuan B F, et al. Preparation of magnetic hydroxyapatite clusters and their application in the enrichment of phosphopeptides[J]. Journal of Separation Science, 2014, 37:580-586. [45] Rush J, Moritz A, Lee K A, et al. Immuno-affinity profiling of tyrosine phosphorylation in cancer cells[J]. Nature Biotechnology, 2005, 23(1):94-101. [46] Zhang Y,Wolf-Yadlin A,White F M. Quantitative proteomic analysis of phosphotyrosine-mediated cellular signaling networks[J]. Methods in Molecular Biology, 2007, 359:203-212. [47] Gronborg M, Kristiansen T Z, Stensballe A, et al. A mass spectrometry-based proteomic approach for identification of serine/threonine-phosphorylated proteins by enrichment with phospho-specific antibodies-Identification of a novel protein, Frigg, as a protein kinase A substrate[J]. Molecular & Cellular Proteomics, 2002, 1(7):517-527. [48] Mann M, Ong S E, Gronborg M, et al. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome[J]. Trends in Biotechnology, 2002, 20(6):261-268. [49] Sopko R, Andrews B J. Linking the kinome and phosphorylome-a comprehensive review of approaches to find kinase targets[J]. Molecular Biosystems, 2008, 4(9):920-933. [50] López E, López I, Ferreira A, et al. Retracted clinical and technical phosphoproteomic research[J]. Proteome Science, 2011, 9:27. [51] Tsigankov P, Gherardini P F, Helmer-Citterich M, et al. Phosphoproteomic analysis of differentiating leishmania parasites reveals a unique stage-specific phosphorylation motif[J]. Journal of Proteome Research, 2013, 12(7):3405-3412. [52] Oda Y, Nagasu T, Chait B T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome[J]. Nature Biotechnology, 2001, 19(4):379-382. [53] Kwon S J, Choi E Y, Seo J B, et al. Isolation of the Arabidopsis phosphoproteome using a biotin-tagging approach[J]. Molecules and Cells, 2007, 24(2):268-275. |