JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2018, Vol. 42 ›› Issue (01): 89-97.doi: 10.3969/j.issn.1000-2006.201703030
Previous Articles Next Articles
ZENG Jun, SUN Huizhen*
Online:
2018-03-30
Published:
2018-03-30
CLC Number:
ZENG Jun, SUN Huizhen. Classification of ultrasonic acoustic emissions features on determining embolism-related signals[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(01): 89-97.
[1] HAYHOE K, WAKE C P, HUNTINGTON T G, et al. Past and future changes in climate and hydrological indicators in the US Northeast[J]. Climate Dynamics, 2007, 28(4): 381-407. DOI:10.1007/s00382-006-0187-8.
[2] SOLOMON S, QIN D, MANNING M,et al. IPCC fourth assessment report of working group I. climate change 2007: the physical science basis[M]. Cambridge: Cambridge University Press, 2007. [3] ALLEN C D, MACALADY A K, CHENCHOUNI H, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests[J]. Forest Ecology and Management, 2010, 259(4): 660-684. DOI:10.1016/j.foreco.2009.09.001. [4] CHOAT B, JANSEN S, BRODRIBB T J, et al. Global convergence in the vulnerability of forests to drought[J]. Nature, 2012, 491(7426): 752-755. DOI:10.1038/nature11688. [5] TYREE M T, SPERRY J S. Vulnerability of xylem to cavitation and embolism[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40(1): 19-38. DOI:10.1146/annurev.pp.40.060189.000315. [6] DOMEC J C, GARTNER B L. Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees[J]. Trees, 2001, 15(4): 204-214. DOI:10.1007/s004680100095. [7] TYREE M T, DIXON M A. Cavitation events in Thuja occidentalis L.:utrasonic acoustic emissions from the sapwood can be measured[J]. Plant Physiology, 1983, 72(4): 1094-1099. DOI:10.1104/pp.72.4.1094. [8] TYREE M T, DIXON M A, TYREE E L, et al. Ultrasonic acoustic emissions from the sapwood of cedar and hemlock: an examination of three hypotheses regarding cavitations[J]. Plant Physiology, 1984, 75(4): 988-992. DOI:10.1104/pp.75.4.988. [9] GULLO M A, SALLEO S. Three different methods for measuring xylem cavitation and embolism: a comparison[J]. Annals of Botany, 1991, 67(5): 417-424. DOI:10.1093/oxfordjournals.aob.a088176. [10] COCHARD H. Vulnerability of several conifers to air embolism[J]. Tree Physiology, 1992, 11(1): 73-83. DOI:10.1093/treephys/11.1.73. [11] COCHARD H, BADEL E, HERBETTE S, et al. Methods for measuring plant vulnerability to cavitation: a critical review[J]. Journal of Experimental Botany, 2013, 64(15): 4779-4791. DOI:10.1093/jxb/ert193. [12] TYREE M T, DIXON M A, THOMPSON R G. Ultrasonic acoustic emissions from the sapwood of Thuja occidentalis measured inside a pressure bomb[J]. Plant Physiology, 1984, 74(4): 1046-1049. DOI:10.1104/pp.74.4.1046. [13] TYREE M T, DIXON M A. Water stress induced cavitation and embolism in some woody plants[J]. Physiologia Plantarum, 1986, 66(3): 397-405. DOI:10.1111/j.1399-3054.1986.tb05941.x. [14] ROSNER S, KLEIN A, WIMMER R, et al. Extraction of features from ultrasound acoustic emissions: a tool to assess the hydraulic vulnerability of Norway spruce trunkwood[J]. New Phytologist, 2006, 171(1): 105-116. DOI:10.1111/j.1469-8137.2006.01736.x. [15] MAYR S, ROSNER S. Cavitation in dehydrating xylem of Picea abies: energy properties of ultrasonic emissions reflect tracheid dimensions[J]. Tree Physiology, 2011, 31(1): 59-67. DOI:10.1093/treephys/tpq099. [16] ROSNER S. Acoustic detection of cavitation events in water conducting elements of Norway spruce sapwood[J]. Journal of Acoustic Emission, 2004, 22(1): 110-118. [17] ROSNER S. A new type of vulnerability curve: is there truth in vine?[J]. Tree Physiology, 2015, 35(4): 410-414. DOI:10.1093/treephys/tpu080. [18] HACKE U, SAUTER J J. Drought-induced xylem dysfunction in petioles, branches, and roots of Populus balsamifera L. and Alnus glutinosa(L.)Gaertn[J]. Plant Physiology, 1996, 111(2): 413-417. DOI:10.1104/pp.111.2.413. [19] HACKE U, SAUTER J J. Vulnerability of xylem to embolism in relation to leaf water potential and stomatal conductance in Fagus sylvatica f. purpurea and Populus balsamifera[J]. Journal of Experimental Botany, 1995, 46(9): 1177-1183. DOI:10.1093/jxb/46.9.1177. [20] NOLF M, BEIKIRCHER B, ROSNER S, et al. Xylem cavitation resistance can be estimated based on time-dependent rate of acoustic emissions[J]. New Phytologist, 2015, 208(2): 625-632. DOI:10.1111/nph.13476. [21] DE ROO L, VERGEYNST L, DE BAERDEMAEKER N, et al. Acoustic emissions to measure drought-induced cavitation in plants[J]. Applied Sciences, 2016, 6(3): 71. DOI:10.3390/app6030071. [22] BEALL F C. Overview of the use of ultrasonic technologies in research on wood properties[J]. Wood Science and Technology, 2002, 36(3): 197-212. DOI:10.1007/s00226-002-0138-4. [23] KAWAMOTO S, WILLIAMS R S. Acoustic emission and acousto-ultrasonic techniques for wood and wood-based composites: a review[R]. Madison, WI, USA: US Department of Agriculture, 2002. [24] QUARLES S L. Acoustic emission associated with oak during drying[J]. Wood and Fiber Science, 1992, 24(1): 2-12. [25] VERGEYNST L L, SAUSE M G, DE BAERDEMAEKER N J, et al. Clustering reveals cavitation-related acoustic emission signals from dehydrating branches[J]. Tree Physiology, 2016, 36(6): 786-796. DOI:10.1093/treephys/tpw023. [26] BARNARD D M, MEINZER F C, LACHENBRUCH B, et al. Climate-related trends in sapwood biophysical properties in two conifers: avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance[J]. Plant, Cell and Environment, 2011, 34(4): 643-654. DOI:10.1111/j.1365-3040.2010.02269.x. [27] ROSNER S. Characteristics of acoustic emissions from dehydrating wood related to shrinkage processes[J]. Journal of Acoustic Emission, 2007, 25(1): 149-156. [28] PAMMENTER N W, VANDER WILLIGEN C. A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation[J]. Tree Physiology, 1998, 18(8/9): 589-593. DOI:10.1093/treephys/18.8-9.589. [29] MAHERALI H, POCKMAN W T, JACKSON R B. Adaptive variation in the vulnerability of woody plants to xylem cavitation[J]. Ecology, 2004, 85(8): 2184-2199. DOI:10.1890/02-0538. [30] OLIVERAS I, MARTÍNEZ-VILALTA J, JIMENEZ-ORTIZ T, et al. Hydraulic properties of Pinus halepensis, Pinus pinea and Tetraclinis articulata in a dune ecosystem of Eastern Spain[J]. Plant Ecology, 2003, 169(1): 131. DOI:10.1023/A:1026223516580. [31] MARTI'NEZ-VILALTA J, PIÑOL J. Drought-induced mortality and hydraulic architecture in pine populations of the NE Iberian Peninsula[J]. Forest Ecology and Management, 2002, 161(1): 247-256. DOI:10.1016/s0378-1127(01)00495-9. [32] 奚如春. 油松、侧柏、元宝枫蒸腾耗水的空穴栓塞和水容调节机制[D]. 北京: 北京林业大学, 2006. XI R C. Studies on the modulation mechanisms of water consumption of xylem cavitation and embolism and water capacitance in three tree species[D]. Beijing: Beijing Forestry University, 2006. [33] 李秧秧, 石辉, 邵明安. 黄土丘陵区乔灌木叶水分利用效率及与水力学特性关系[J]. 林业科学, 2010, 46(2): 67-73. DOI:10.11707/j.1001-7488.20100212. LI Y Y, SHI H, SHAO M A. Leaf water use efficiency and its relationship with hydraulic characteristics in eight dominant trees and shrubs in loess hilly area during vegetation succession[J]. Scientia Silvae Sinicae, 2010, 46(2): 67-73. [34] 申卫军, 张硕新, 刘立科. 几种木本植物木质部栓塞的日变化[J]. 西北林学院学报, 1999, 14(1): 22-27. DOI:10.3969/j.issn.1001-7461.1999.01.005. SHEN W J, ZHANG S X, LIU L K. Diurnal variation of xylem embolism in some woody plants[J]. Journal of Northwest Forestry University, 1999, 14(1): 22-27. [35] 申卫军, 张硕新, 金燕. 几种木本植物木质部栓塞的季节变化[J]. 西北林学院学报, 1999, 14(1): 28-32. DOI:10.3969/j.issn.1001-7461.1999.01.006. SHEN W J, ZHANG S X, JIN Y. Seasonal variation of xylem embolism in some woody plants[J]. Journal of Northwest Forestry University, 1999, 14(1): 28-32. [36] 安锋, 张硕新. 7种木本植物根和小枝木质部栓塞的脆弱性[J]. 生态学报, 2005, 25(8): 1928-1933. DOI:10.3321/j.issn:1000-0933.2005.08.014. AN F, ZHANG S X. Studies of roots and shoots vulnerability to xylem embolism in seven woody plants[J]. Acta Ecologica Sinica, 2005, 25(8): 1928-1933. [37] 成俊卿, 杨家驹, 刘鹏. 中国木材志[M]. 北京: 中国林业出版社, 1992. CHENG J Q, YANG J J, LIU P. Woods of China[M]. Beijing: China Forestry Publishing House, 1992. [38] VERGEYNST L L, DIERICK M, BOGAERTS J A, et al. Cavitation: a blessing in disguise? new method to establish vulnerability curves and assess hydraulic capacitance of woody tissues[J]. Tree Physiology, 2015, 35(4): 400-409. DOI:10.1093/treephys/tpu056. [39] WOLKERSTORFER S V, ROSNER S, HIETZ P. An improved method and data analysis for ultrasound acoustic emissions and xylem vulnerability in conifer wood[J]. Physiologia Plantarum, 2012, 146(2): 184-191. DOI:10.1111/j.1399-3054.2012.01605.x. [40] YAMAMOTO H, SASSUS F, NINOMIYA M, et al. A model of anisotropic swelling and shrinking process of wood. Part 2. a simulation of shrinking wood [J]. Wood Science and Technology, 2001, 35(1): 167-181. DOI:10.1007/s002260000074. [41] ROSNER S, KLEIN A, MÜLLER U, et al. Hydraulic and mechanical properties of young Norway spruce clones related to growth and wood structure[J]. Tree Physiology, 2007, 27(8): 1165-1178. DOI:10.1093/treephys/27.8.1165. [42] JOHNSON D M, MEINZER F C, WOODRUFF D R, et al. Leaf xylem embolism, detected acoustically and by cryo-SEM, corresponds to decreases in leaf hydraulic conductance in four evergreen species[J]. Plant, Cell and Environment, 2009, 32(7): 828-836. DOI:10.1111/j.1365-3040.2009.01961.x. [43] 丁小康, 张祥雪, 郝燕华, 等. 木材干燥过程中声发射信号分析[J]. 木材工业, 2012, 26(3): 40-43. DOI:10.3969/j.issn.1001-8654.2012.03.011. DING X K, ZHANG X X, HAO Y H, et al. Acoustic emission analysis during drying small thin wood samples[J]. China Wood Industry, 2012, 26(3): 40-43. [44] 李秧秧, 石辉, 邵明安. 黄土丘陵区典型树木抵抗空穴化能力及与木质部结构的关系[J]. 北京林业大学学报, 2010, 32(3): 8-13. DOI:10.13332/j.1000-1522.2010.03.029. LI Y Y, SHI H, SHAO M A. Cavitation resistance of dominant trees and shrubs in loess hilly region and their relationship with xylem structure[J]. Journal of Beijing Forestry University, 2010, 32(3): 8-13. [45] 李荣, 党维, 蔡靖, 等. 6个耐旱树种木质部结构与栓塞脆弱性的关系[J]. 植物生态学报, 2016, 40(3): 255-263. DOI:10.17521/cjpe.2015.0260. LI R, DANG W, CAI J, et al. Relationships between xylem structure and embolism vulnerability in six species of drought tolerance trees[J]. Chinese Journal of Plant Ecology, 2016, 40(3): 255-263. [46] 张硕新, 申卫军, 张远迎. 六种木本植物木质部栓塞化生理生态效应的研究[J]. 生态学报, 2000, 20(5): 788-794. DOI:10.3321/j.issn:1000-0933.2000.05.013. ZHANG S X, SHEN W J, ZHANG Y Y. Ecophysiological effect of xylem embolism in six tree species[J]. Acta Ecologica Sinica, 2000, 20(5): 788-794. [47] 左力翔, 李俊辉, 李秧秧, 等. 散孔材与环孔材树种枝干、叶水力学特性的比较研究[J]. 生态学报, 2012, 32(16): 5087-5094. DOI:10.5846/stxb201110281610. ZUO L X, LI J H, LI Y Y, et al. Comparison of hydraulic traits in branches and leaves of diffuse-and ring-porous species[J]. Acta Ecologica Sinica, 2012, 32(16): 5087-5094. |
[1] | JIANG Xiaozeng, ZHU Yan, ZHOU Hengwei, HUANG Xingzhao, FU Longlong, WAN Fangfang. Effects of drought on nitrogen uptake and distribution in Camellia oleifera root under nitrogen addition [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 95-102. |
[2] | ZHANG Yinfeng, CAI Hongyue, PENG Jingen, LIU Xuejun, XIE Lijuan, ZHANG Hua, WANG Yanmei. Effects of different planting environments on the growth of Rhododendron moulmainense in Shenzhen urban parks [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 197-204. |
[3] | CUI Lingjun, LIU Yuxia, LIN Jian, SHI Kaiming. Effects of arbuscular mycorrhizal fungi on roots growth and endogenous hormones of Phoebe zhennan under salt stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(4): 119-124. |
[4] | WANG Zi, XU Shaojun, KANG Lu, YAN Junyi, YANG Menghao, ZHAO Yifan, LIU Yang. Effects of drought stress and rewatering on physiological indexes of four Paeonia lactiflora cultivars and evaluation of their drought resistance [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(06): 44-50. |
[5] | RU Guangxin, LIU Xiaonan, ZHU Xiuhong, ZHANG Longchong, WANG Yunrui, ZHOU Shuangqing. Physiological characteristic analysis of etiolation mutant in Paulownia fortnnei [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(04): 181-185. |
[6] | LIU Longyun, WU Caie, LI Tingting, CHEN Zongyong. Nutritional components in palm (Trachycarpus fortunei) buds [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(03): 193-197. |
[7] | DAI Qianli, LI Jinhua, HU Jianjun, LU Mengzhu, GIUSEPPE Nervo. Improvement on growth and photosynthetic physiological performance of three willow clones or cultivar under Cd treatments and supplying Fe [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(02): 63-72. |
[8] | WANG Jingyan, TANG Hailong, GONG Wei, HU Wen, GOU Guojun. Effects of water and fertilizer coupling on growth, nutrients absorption and fertilizer use of Zanthoxylum bungeanum Maxim ‘Hanyuan' seedling [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(03): 33-40. |
[9] | GAN Xiao-hong1,2, DING Yu-long1*. The Dynamic Changes of Acid Phosphatase during the Fiber Development in Phyllostachys edulis Culm [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2006, 30(03): 13-18. |
[10] | YU Guan-xia1, RUAN Xi-gen1, FENG Wei-zhong1, HUANG Min-ren2. Analysis on Supercooling Phenomenon in the Clone of Poplar [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2006, 30(02): 67-70. |
[11] | XU Xi-zeng1, XU Cheng-xiang2. Effects of Silicon on Ion Micro-distribution Status of Ziziphus jujuba cv. Jinsixiaozao Under Salt Stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2006, 30(02): 85-88. |
[12] | XU Cheng-xiang1,2, MA Yan-ping2, XU Xi-zeng1*, HU Heng-kang2. Exogenous Silicon Regulates Membrane Fatty Acid in Root and Leaf of Ziziphus jujuba cv. Jinsixiaozao under Salt Stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2006, 30(02): 89-93. |
[13] | SONG Li-yi1,2, FANG Sheng-zuo1. Physiological Responses of Pteroceltis tatarinowii Seedlings Under Hydroponic Culture to NaC! Stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2006, 30(02): 94-98. |
[14] | ZHU Wan-ze1, WU Yong-bo2, XUE Jian-hui2. Photosynthetic Characteristics of Quercus pannosa in Gongga Mountain Region [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2006, 30(01): 25-28. |
[15] | WAN Jin1,2, SHI Lei1*, ZHANG Jin-zheng1, TANG Geng-guo2. Effects of Salt Stress on Some Physiological Indexes in Iris Leaves [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2006, 30(01): 57-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||