JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2019, Vol. 43 ›› Issue (6): 129-136.doi: 10.3969/j.issn.1000-2006.201906069
Previous Articles Next Articles
YIN Qi(), QIN Wenqi, LIU Tingting, KANG Lu, WU Aimin*(
), DENG Xiaomei*(
)
Received:
2019-06-20
Revised:
2019-08-06
Online:
2019-11-30
Published:
2019-11-30
Contact:
WU Aimin,DENG Xiaomei
E-mail:yinqiyinqi216@163.com;wuaimin@scau.edu.cn;dxmei2006@scau.edu.cn
CLC Number:
YIN Qi, QIN Wenqi, LIU Tingting, KANG Lu, WU Aimin, DENG Xiaomei. Functional conservation of Neolamarckia cadamba NcIRX9 gene in xylan biosynthesis[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 129-136.
Fig.2
Phylogenetic tree analysis and protein structure of NcIRX9 A. The phylogenetic tree of NcIRX9 was constructed by the adjacency method in the software MEGA6.0, and Selaginella moellendorffii, Physcomitrella patens, poplar, eucalyptus, rice, sorghum and Arabidopsis were selected. Among them, At. Arabidopsis; Potri. Populus trichocarpa; Pp. Physcomitrella patens; Sm. Selaginella; Eucgr. Eucalyptus grandis; LOC Os. Oryza sativa; Sobic.. Sorghum; Bradi. Brachypodium distachyon. B. Protein structure of NcIRX9. C.Protein structure of AtIRX9. "
Fig.5
Phenotypes and microscopy analysis A. Arabidopsis plant height map. From left to right: wild-type, irx9, NcIRX9/ irx9. B, C and D were the vascular structures of the wild-type, irx9 mutant, NcIRX9/irx9 complementary plants after toluene blue staining. E, F and G were chemical immunizations of wild-type, irx9 mutant, and NcIRX9/irx9 complementary plants, respectively. "
Fig.6
Analysis of xylans A. Analysis of monosaccharide content of mutant and complementary plants. The monosaccharide content of the mutant and the complementary plants was analyzed by HPLC after hydrolysis. In the figure, Fuc. fucose; Ara. arabinose; Gal. galactose; Xyl. xylose; Man. mannose; GalA. galacturonic acid; GlcA. glucose galacturonic acid. *P < 0.05, ** P < 0.01. B. 1H-NMR analysis of mutant and complementary plant xylan hydrolysates. In the figure, proton-dependent sugar residues are shown in[28], and branched-chain and unbranched entary plant xylan hydrolysates. In the figure, proton-dependent sugar residues are shown-Rha, G. a xylose residue containing an galacturonic acid. M. a xylose residue containing a Me-α-GlcA side chain. "
[1] | 罗献瑞. 中国植物志[M]. 北京: 科学出版社, 1999: 261. |
LUO X R. Flora of China [M]. Beijing: Science Press, 1999: 261. | |
[2] | 邓小梅, 欧阳昆唏, 张倩, 等. 团花研究现状及发展思考[J]. 中南林业科技大学学报, 2011, 31(11):90-95. DOI: 10.14067/j.cnki.1673-923x.2011.11.032. |
DENG X M, OUYANG K X, ZHANG Q, et al. Research status and development thinking ofNeolamarckia cadamba [J]. Journal of Central South University of Forestry & Technology, 2011, 31(11):90-95. | |
[3] | 郑万钧. 中国树木志[M]. 北京: 中国林业出版社, 2004: 4594-4595. |
ZHENG W J. Chinese tree records[M]. Beijing: China Forestry Publishing House, 2004: 4594-4595. | |
[4] | 苏光荣, 易国南, 杨清. 团花生长特性研究[J]. 西北林学院学报, 2007, 22(5):49-52. DOI: 10.3969/j.issn.1001-7461.2007.05.012. |
SU G R, YI G N, YANG Q. A study on the growth character of anthocephalus chinensis[J]. Journal ofNorthwest Forestry University, 2007, 22(5):49-52. | |
[5] |
SCHELLER H V, ULVSKOV P. Hemicelluloses[J]. Annual Review of Plant Biology, 2010, 61(1):263-289. DOI: 10.1146/annurev-arplant-042809-112315.
doi: 10.1146/annurev-arplant-042809-112315 |
[6] |
PAULY M, GILLE S, LIU L F, et al. Hemicellulose biosynjournal[J]. Planta, 2013, 238(4):627-642. DOI: 10.1007/s00425-013-1921-1.
doi: 10.1007/s00425-013-1921-1 |
[7] |
MELLEROWICZ E J, GORSHKOVA T A. Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition[J]. Journal of Experimental Botany, 2012, 63(2):551-565. DOI: org/10.1093/jxb/err339.
doi: 10.1093/jxb/err339 |
[8] | NIMZ H H, SCHMITT U, SCHWAB E, et al. Ullmann’s encyclopedia of industrial chemistry[M]. NewYork: Wiley, 2000. |
[9] |
YORK W, ONEILL M. Biochemical control of xylan biosynjournal: which end is up?[J]. Current Opinion in Plant Biology, 2008, 11(3):258-265. DOI: 10.1016/j.pbi.2008.02.007.
doi: 10.1016/j.pbi.2008.02.007 |
[10] |
FAIK A. Xylan biosynjournal: news from the grass[J]. Plant Physiology, 2010, 153(2):396-402.DOI: 10.1104.pp.110.154237.
doi: 10.1104/pp.110.154237 |
[11] | 吴蔼民, 赵先海, 解巧丽, 等. 葡萄糖醛酸木聚糖生物合成研究进展[J]. 华南农业大学学报, 2015, 36(4):1-10.DOI: 10.7671/j.issn.1001-411X.2015.04.001. |
WU A M, ZHAO X H, XIE Q L, et al. Research progress in glucuronoxylan biosynjournal[J]. Journal of South China Agricultural University, 2015, 36(4):1-10. | |
[12] | GILLE S, PAULY M. O-acetylation of plant cell wall polysaccharides[J]. Frontiers in Plant Science, 2012, 3:12. DOI: 10.3389/fpls.2012.00012. |
[13] | MORTIMER J C, MILES G P, BROWN D M, et al. Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(40):17409-17414. DOI: 10.1073/pnas.1005456107. |
[14] |
PETERSEN P D, LAU J, EBERT B, et al. Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynjournal mutants[J]. Biotechnology for Biofuels, 2012, 5(1):84. DOI: 10.1186/1754-6834-5-84.
doi: 10.1186/1754-6834-5-84 |
[15] |
WU A M, HÖRNBLAD E, VOXEUR A, et al. Analysis of the Arabidopsis /-and /-Pairs of Glycosyltransferase genes reveals critical contributions to biosynjournal of the Hemicellulose Glucuronoxylan[J]. Plant Physiology, 2010, 153(2):542-554.DOI: 10.1104/pp.110.154971.
doi: 10.1104/pp.110.154971 |
[16] |
WU A M, RIHOUEY C, SEVENO M, et al. The Arabidopsis IRX10 and IRX10-LIKE glycosyltransferases are critical for glucuronoxylan biosynjournal during secondary cell wall formation[J]. The Plant Journal: for Cell and Molecular Biology, 2009, 57(4):718-731. DOI: 10.1111/j.1365-313X.2008.03724.
doi: 10.1111/tpj.2009.57.issue-4 |
[17] | TURNER R, SOMERVILLE R. Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall[J]. The Plant Cell, 1997, 9(5):689-701. DOI: 10.1105/tpc.9.5.689. |
[18] |
BROWN D M, ZEEF L A, ELLIS J, et al. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics[J]. The Plant Cell, 2005, 17(8):2281-2295. DOI: 10.1105/tpc.105.031542.
doi: 10.1105/tpc.105.031542 |
[19] |
ZHONG R Q, PEÑA M J, ZHOU G K, et al. Arabidopsis fragile fiber 8, which encodes a putative glucuronyl transferase, is essential for normal secondary wall synjournal[J]. The Plant Cell, 2005, 17(12):3390-3408. DOI: 10.1105/tpc.105.035501.
doi: 10.1105/tpc.105.035501 |
[20] | PERSSON S, WEI H R, MILNE J, et al. Identification of genes required for cellulose synthesis by regression analysis of public microarray data sets[J]. Proceedings of theNational Academy of Sciences of the United States of America, 2005, 102(24):8633-8638.DOI: 10.1073/pnas.0503392102. |
[21] |
CARROLL A, SOMERVILLE C. Cellulosic biofuels[J]. Annual Review of Plant Biology, 2009, 60(1):165-182. DOI: 10.1146/annurev.arplant.043008.092125.
doi: 10.1146/annurev.arplant.043008.092125 |
[22] |
YANG B, WYMAN C E. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose[J]. Biotechnology and Bioengineering, 2004, 86(1):88-95. DOI: 10.1002/bit.20043.
doi: 10.1002/(ISSN)1097-0290 |
[23] |
BROWN D M, ZHANG Z N, STEPHENS E, et al. Characterization of IRX10 and IRX10-like reveals an essential role in glucuronoxylan biosynjournal inArabidopsis[J]. The Plant Journal, 2009, 57(4):732-746. DOI: 10.1111/j.1365-313x.2008.03729.x.
doi: 10.1111/tpj.2009.57.issue-4 |
[24] |
BROWN D M, GOUBET F, WONG V W, et al. Comparison of five xylan synjournal mutants reveals new insight into the mechanisms of xylan synjournal[J]. The Plant Journal, 2007, 52(6):1154-1168. DOI: 10.1111/j.1365-313x.2007.03307.
doi: 10.1111/tpj.2007.52.issue-6 |
[25] |
LEE C, TENG Q, HUANG W L, et al. The Arabidopsis family GT43 glycosyltransferases form two functionally nonredundant groups essential for the elongation of glucuronoxylan backbone[J]. Plant Physiology, 2010, 153(2):526-541. DOI: 10.1104/pp.110.155309.
doi: 10.1104/pp.110.155309 |
[26] |
JENSEN J K, JOHNSON N R, WILKERSON C G. Arabidopsis thaliana IRX10 and two related proteins from psyllium andPhyscomitrella patensare xylan xylosyltransferases[J]. The Plant Journal, 2014, 80(2):207-215. DOI: 10.1111/tpj.12641.
doi: 10.1111/tpj.12641 |
[27] |
LEE C, O’NEILL M A, TSUMURAYA Y, et al. The irregular xylem 9 mutant is deficient in xylan xylosyltransferase activity[J]. Plant and Cell Physiology, 2007, 48(11):1624-1634. DOI: 10.1093/pcp/pcm135.
doi: 10.1093/pcp/pcm135 |
[28] |
PEÑA M J, ZHONG R Q, ZHOU G K, et al. Arabidopsis irregular xylem 8 and irregular xylem9: implications for the complexity of glucuronoxylan biosynjournal[J]. The Plant Cell, 2007, 19(2):549-563. DOI: 10.1105/tpc.106.049320.
doi: 10.1105/tpc.106.049320 |
[29] |
LI L, HUANG J F, QIN L X, et al. Two Cotton fiber-associated glycosyltransferases, GhGT43A1 and GhGT43C1, function in hemicellulose glucuronoxylan biosynjournal during plant development[J]. Physiologia Plantarum, 2014, 152(2):367-379. DOI: 10.1111/ppl.12190.
doi: 10.1111/ppl.2014.152.issue-2 |
[30] | CHINIQUY D, VARANASI P, OH T, et al. Three novel rice genes closely related to the Arabidopsis IRX9, IRX9L, and IRX14 genes and their roles in xylan biosynjournal[J]. Frontiers in Plant Science, 2013, 4:83. DOI: 10.3389/fpls.2013.00083. |
[31] |
RATKE C, PAWAR P M A, BALASUBRAMANIAN V K, et al. Populus GT43 family members group into distinct sets required for primary and secondary wall xylan biosynjournal and include useful promoters for wood modification[J]. Plant Biotechnology Journal, 2015, 13(1):26-37. DOI: 10.1111/pbi.12232.
doi: 10.1111/pbi.2014.13.issue-1 |
[32] |
WEI Z, LAMPUGNANI E R, PICARD K L, et al. Asparagus IRX9, IRX10, and IRX14A are components of an active xylan backbone synthase complex that forms in the Golgi apparatus[J]. Plant Physiology, 2016, 171(1):93-109.DOI: 10.1104/pp.15.0191.
doi: 10.1104/pp.15.01919 |
[33] |
TAMURA K, STECHER G, PETERSON D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0[J]. Molecular Biology and Evolution, 2013, 30(12):2725-2729. DOI: 10.1093/molbev/mst197.
doi: 10.1093/molbev/mst197 |
[34] |
HÖRNBLAD E, ULFSTEDT M, RONNE H, et al. Partial functional conservation of IRX10 homologs in Physcomitrella patens and Arabidopsis thaliana indicates an evolutionary step contributing to vascular formation in land plants[J]. BMC Plant Biology, 2013, 13(1):3. DOI: 10.1186/1471-2229-13-3.
doi: 10.1186/1471-2229-13-3 |
[35] |
TAUJALE R, YIN Y B. Glycosyltransferase family 43 is also found in early eukaryotes and has three subfamilies in charophycean green algae[J]. PLoS One, 2015, 10(5):e0128409. DOI: 10.1371/journal.pone.0128409.
doi: 10.1371/journal.pone.0128409 |
[1] | WANG Zhipu, LI Zhuorong, LUO Zhibin, DENG Shurong. Mechanisms of PagAPY1 in regulating drought tolerance in Populus alba × P. glandulosa [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 105-112. |
[2] | ZHANG Qun, JI Xiaoyu, HE Zihang, WANG Zhibo, TIAN Zengzhi, WANG Chao. Cloning and salt tolerance analysis of BpGRAS1 gene in Betula platyphylla [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 38-46. |
[3] | LI Han, LI Xin,XU Yong, CHEN Mu, YU Shiyuan, YONG Qiang. Xylo-oligosaccharides and ethanol production from bamboo processing residues [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2015, 39(05): 145-149. |
[4] | LI Fei, XIE Jingcong,LI Qi,ZHANG Xuesong,ZHAO Linguo. Thermostability of xylanase(XynB)by introducing Arg into its Ser/Thr surface [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(04): 107-112. |
[5] | HOU Guangbei,FENG Nianjie,ZHANG Lin,DAI Kai,WANG Qi,ZHAI Huamin,XUE Xihua. Enzymatic hydrolysis characteristics of xylan in spent liquor of wheat straw alkaline sulfite [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(04): 113-117. |
[6] | OUYANG Jia, LIAN Zhina, LIN Jinlei, LI Xin, SONG Xiangyang. Technological research on biobleaching effect of reed pulp boosted by modified xylanase [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2012, 36(02): 25-28. |
[7] | LIU Yanping, ZHANG Yang*. Influence of xylanase treatment on sorption isotherm of wheatstraw fiberboard [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2011, 35(05): 79-82. |
[8] | LIU Lei1, YONG Qiang2, YU Shiyuan2*. Enzymatic hydrolysis of hightemperature degraded xylan with xylanase [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2011, 35(03): 21-. |
[9] | ZHOU Ji, JING Yi, YOU Jixue, LIAN Hailan, AN Xinnan*. Study on removing stickies containing in the deinked pulp of waste newspaper by laccase/xylanase treatment [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2011, 35(03): 22-. |
[10] | YOU Jixue, ZHU Liuqing, LIAN Zhinan, OUYANG Jia*. Effect of recombinant xylanase pretreatment on bleachability of wheat pulp [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2010, 34(04): 57-60. |
[11] | WANG Chu, ZHAI Huamin*, LIU Jingyi, DAI Kai, WU Wenjuan. Effect of thermostable and alkaline tolerant xylanase pretreatment on the bleaching properties of pine kraft pulp [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2010, 34(03): 31-34. |
[12] | JIANG Hua, BO Kai-jing. Adsorption of xylanases from Trichoderma viride to polysaccharides [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2008, 32(06): 19-23. |
[13] | GU Yang, WANG Yan, YONG Qiang, YU Shi-yuan*. Bleaching-aided Effects of Cellulase-poor Xylanase on Wheat Straw Pulp [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2006, 30(03): 19-22. |
[14] | OUYANG Jia1,2, XIE Cheng-jia2, LI Shuang2, HE Bing-fang2. Cloning and Sequencing of a Molluscan Glycosyl Hydrolase Core Gene from the Snail, Ampullaria crossean [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2006, 30(02): 29-32. |
[15] | DONG Bo, LIAN Zhi-na, YONG Qiang, YU Shi-yuan*. Effects of Carbon Sources on the Biosynthesis of β-glycanases by Trichoderma reesei [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2005, 29(06): 88-90. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||