JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (1): 182-188.doi: 10.12302/j.issn.1000-2006.201908036
Previous Articles Next Articles
XIN Shidong(), HEI Pei, JIANG Lichun*(
)
Received:
2019-08-28
Accepted:
2019-12-05
Online:
2021-01-30
Published:
2021-02-01
Contact:
JIANG Lichun
E-mail:774933353@qq.com;jlichun@nefu.edu.cn
CLC Number:
XIN Shidong, HEI Pei, JIANG Lichun. Effects of different calibration positions on prediction precision of quantile taper function for Larix gmelinii[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(1): 182-188.
Table 2
Parameter estimates of taper models for Larix gmelinii"
回归方法 regression methods | 分位点 quantiles | a1 | a2 | a3 | a4 | b1 | b2 |
---|---|---|---|---|---|---|---|
非线性回归nonlinear regression | — | -4.830 7 | 2.387 7 | -2.344 5 | 267.115 0 | 0.789 2 | 0.057 6 |
分位数回归quantile regression | τ=0.1 | -5.831 9 | 2.995 1 | -2.670 4 | 174.531 9 | 0.862 9 | 0.064 8 |
τ=0.2 | -4.456 5 | 2.238 1 | -2.118 5 | 172.336 9 | 0.797 2 | 0.068 1 | |
τ=0.3 | -4.805 8 | 2.414 2 | -2.391 7 | 174.082 7 | 0.791 3 | 0.069 1 | |
τ=0.4 | -6.149 5 | 3.109 9 | -3.086 8 | 167.964 4 | 0.829 5 | 0.070 8 | |
τ=0.5 | -5.447 7 | 2.703 9 | -2.749 4 | 174.551 1 | 0.812 4 | 0.071 0 | |
τ=0.6 | -6.544 5 | 3.269 2 | -3.317 9 | 172.806 8 | 0.837 0 | 0.072 9 | |
τ=0.7 | -7.516 4 | 3.765 5 | -3.839 1 | 172.523 2 | 0.850 5 | 0.075 4 | |
τ=0.8 | -5.471 0 | 2.627 2 | -2.779 5 | 174.657 2 | 0.815 0 | 0.078 4 | |
τ=0.9 | -5.271 5 | 2.462 3 | -2.725 8 | 174.718 1 | 0.808 0 | 0.080 5 |
Table 3
Validation statistics for taper models of Larix gmelinii"
模型 models | 分位点 quantiles | 平均误差 MAB | 相对误差 MPB |
---|---|---|---|
基本模型 base model | — | 1.335 1 | 5.900 1 |
各分位数模型 individual quantile models | τ=0.1 | 2.451 2 | 10.832 1 |
τ=0.2 | 1.834 2 | 8.105 5 | |
τ=0.3 | 1.552 6 | 6.861 1 | |
τ=0.4 | 1.397 7 | 6.176 6 | |
τ=0.5 | 1.322 4 | 5.843 9 | |
τ=0.6 | 1.326 3 | 5.861 1 | |
τ=0.7 | 1.427 0 | 6.306 3 | |
τ=0.8 | 1.706 2 | 7.540 1 | |
τ=0.9 | 2.213 2 | 9.780 4 |
Table 4
Evaluation statistics for taper models of Larix gmelinii at different locations"
组合 模型 group models | 20% | 30% | 40% | 50% | 60% | 70% | 50%* | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
平均误差 MAB | 相对误差 MPB | 平均误差 MAB | 相对误差 MPB | 平均误差 MAB | 相对误差 MPB | 平均误差 MAB | 相对误差 MPB | 平均误差 MAB | 相对误差 MPB | 平均误差 MAB | 相对误差 MPB | 平均误差 MAB | 相对误差 MPB | ||
τ31 | 1.409 1 | 6.227 0 | 1.250 5 | 5.526 1 | 1.168 9 | 5.165 7 | 1.194 0 | 5.276 7 | 1.228 6 | 5.429 4 | 1.456 7 | 6.437 5 | 1.168 1 | 5.162 1 | |
τ32 | 1.388 5 | 6.136 2 | 1.265 2 | 5.591 0 | 1.185 1 | 5.237 1 | 1.212 4 | 5.357 9 | 1.266 1 | 5.595 3 | 1.490 9 | 6.588 4 | 1.186 2 | 5.242 0 | |
τ33 | 1.332 5 | 5.888 5 | 1.224 4 | 5.410 7 | 1.154 6 | 5.102 4 | 1.181 2 | 5.219 8 | 1.214 2 | 5.365 7 | 1.436 6 | 6.348 4 | 1.157 9 | 5.116 8 | |
τ34 | 1.503 5 | 6.644 3 | 1.382 1 | 6.107 6 | 1.305 0 | 5.767 2 | 1.302 2 | 5.754 8 | 1.358 2 | 6.001 9 | 1.561 2 | 6.899 2 | 1.292 3 | 5.711 0 | |
τ51 | 1.412 4 | 6.241 7 | 1.254 4 | 5.543 4 | 1.167 7 | 5.160 4 | 1.193 4 | 5.274 0 | 1.229 1 | 5.431 5 | 1.460 2 | 6.453 1 | 1.168 2 | 5.162 5 | |
τ52 | 1.412 4 | 6.241 4 | 1.254 1 | 5.542 1 | 1.169 6 | 5.168 5 | 1.192 9 | 5.271 8 | 1.228 6 | 5.429 6 | 1.458 1 | 6.443 5 | 1.168 5 | 5.163 6 | |
τ53 | 1.410 1 | 6.231 4 | 1.250 8 | 5.527 4 | 1.169 1 | 5.166 4 | 1.193 4 | 5.273 7 | 1.227 9 | 5.426 1 | 1.455 4 | 6.431 6 | 1.167 4 | 5.158 9 | |
τ54 | 1.333 6 | 5.893 3 | 1.225 7 | 5.416 8 | 1.155 1 | 5.104 6 | 1.181 1 | 5.219 4 | 1.214 1 | 5.365 5 | 1.433 7 | 6.336 0 | 1.158 2 | 5.118 4 | |
τ55 | 1.389 3 | 6.139 3 | 1.265 7 | 5.593 4 | 1.185 6 | 5.239 4 | 1.212 2 | 5.356 8 | 1.265 2 | 5.591 2 | 1.489 1 | 6.580 6 | 1.185 3 | 5.238 0 | |
τ56 | 1.389 4 | 6.139 9 | 1.266 0 | 5.594 9 | 1.185 2 | 5.237 4 | 1.212 5 | 5.358 4 | 1.265 2 | 5.591 1 | 1.487 9 | 6.575 1 | 1.185 3 | 5.238 2 | |
τ71 | 1.413 1 | 6.244 8 | 1.255 0 | 5.545 8 | 1.168 3 | 5.162 7 | 1.193 2 | 5.272 9 | 1.228 2 | 5.427 5 | 1.458 5 | 6.445 3 | 1.167 3 | 5.158 5 | |
τ72 | 1.413 4 | 6.246 2 | 1.255 5 | 5.548 2 | 1.170 1 | 5.170 6 | 1.192 9 | 5.271 5 | 1.228 6 | 5.429 3 | 1.455 3 | 6.431 0 | 1.168 8 | 5.165 1 | |
τ73 | 1.390 3 | 6.144 2 | 1.267 1 | 5.599 5 | 1.186 1 | 5.241 6 | 1.212 1 | 5.356 4 | 1.265 2 | 5.591 0 | 1.486 3 | 6.568 1 | 1.185 6 | 5.239 5 | |
τ74 | 1.413 2 | 6.245 3 | 1.255 3 | 5.547 3 | 1.167 8 | 5.160 7 | 1.193 6 | 5.274 5 | 1.228 1 | 5.427 4 | 1.457 2 | 6.439 7 | 1.167 4 | 5.158 8 | |
τ91 | 1.414 2 | 6.249 6 | 1.256 3 | 5.551 9 | 1.168 8 | 5.164 9 | 1.193 1 | 5.272 6 | 1.228 1 | 5.427 2 | 1.455 7 | 6.432 8 | 1.167 7 | 5.160 1 |
[1] | 孟宪宇. 削度方程和出材率表的研究[J]. 南京林业大学学报(自然科学版), 1982,6(1):122-133. |
MENG X Y. Studies of taper equations and the table of merchantable volumes[J]. J Nanjing For Univ (Nat Sci Ed), 1982,6(1):122-133. | |
[2] |
JIANG L C, BROOKS J R, WANG J X. Compatible taper and volume equations for yellow-poplar in West Virginia[J]. Forest Ecology and Management, 2005,213(1/2/3):399-409. DOI: 10.1016/J.FORECO.2005.04.006.
doi: 10.1016/j.foreco.2005.04.006 |
[3] |
JIANG L C, BROOKS J R. Taper, volume, and weight equations for red pine in West Virginia[J]. Northern Journal of Applied Forestry, 2008,25(3):151-153. DOI: 10.1093/NJAF/25.3.151.
doi: 10.1093/njaf/25.3.151 |
[4] | 曾伟生, 廖志云. 削度方程的研究[J]. 林业科学, 1997,33(2):127-132. |
ZENG W S, LIAO Z Y. Research of the taper equation[J]. Sci Silvae Sin, 1997,33(2):127-132. | |
[5] |
CAO Q V, WANG J. Calibrating fixed-and mixed-effects taper equations[J]. Forest Ecology and Management, 2011,262(4):671-673. DOI: 10.1016/J.FORECO.2011.04.039.
doi: 10.1016/j.foreco.2011.04.039 |
[6] |
SABATIA C O. Use of upper stem diameters in a polynomial taper equation for New Zealand radiata pine: an evaluation[J]. New Zealand Journal of Forestry Science, 2016,46(1):14. DOI: 10.1186/S40490-016-0070-2.
doi: 10.1186/s40490-016-0070-2 |
[7] | CZAPLEWSKI R L, MCCLURE J P. Conditioning a segmented stem profile model for two diameter measurements[J]. Forest Science, 1988,34(2):512-522. |
[8] |
CAO Q V. Calibrating a segmented taper equation with two diameter measurements[J]. Southern Journal of Applied Forestry, 2009,33(2):58-61. DOI: 10.1093/SJAF/33.2.58.
doi: 10.1093/sjaf/33.2.58 |
[9] |
KOZAK A. Effects of upper stem measurements on the predictive ability of a variable-exponent taper equation[J]. Canadian Journal of Forest Research, 1998,28(7):1078-1083. DOI: 10.1139/X98-120.
doi: 10.1139/x98-120 |
[10] |
GÓMEZ-GARCÍA E, CRECENTE-CAMPO F, DIÉGUEZ-ARANDA U. Selection of mixed-effects parameters in a variable-exponent taper equation for birch trees in northwestern Spain[J]. Annals of Forest Science, 2013,70(7):707-715. DOI: 10.1007/S13595-013-0313-9.
doi: 10.1007/s13595-013-0313-9 |
[11] | SHARMA M, PARTON J. Modeling stand density effects on taper for jack pine and black spruce plantations using dimensional analysis[J]. Forest Science, 2009,55(3):268-282. DOI: 10.1093/FORESTSCIENCE/55.3.268. |
[12] |
KOENKER R, BASSETT G. Regression quantiles[J]. Econometrica, 1978,46(1):33-50.
doi: 10.2307/1913643 |
[13] |
KOENKER R, HALLOCK K F. Quantile regression[J]. Journal of Economic Perspectives, 2015,15(4):143-156.
doi: 10.1257/jep.15.4.143 |
[14] | 张期奇, 董希斌, 张甜, 等. 抚育间伐强度对兴安落叶松中龄林测树因子的影响[J]. 森林工程, 2018,34(5):1-7. |
ZHANG Q Q, DONG X B, ZHANG T, et al. The Effects of Different thinning Intensities on tree-measurement Factors of middle-aged Larch gmelinii Seedlings[J]. Forest Engineering, 2018,34(5):1-7. | |
[15] | SHARMA M, BURKHART H E. Selecting a level of conditioning for the segmented polynomial taper equation[J]. Forest Science, 2003,49(2):324-330. DOI: 10.1093/FORESTSCIENCE/49.2.324. |
[16] |
COBLE D W, HILPP K. Compatible cubic-foot stem volume and upper-stem diameter equations for semi-intensive plantation grown loblolly pipe trees in East Texas[J]. Southern Journal of Applied Forestry, 2006,30(3):132-141. DOI: 10.1093/SJAF/30.3.132.
doi: 10.1093/sjaf/30.3.132 |
[17] | TRINCADO G, BURKHART H E. A generalized approach for modeling and localizing stem profile curves[J]. Forest Science, 2006,52(6):670-682. DOI: 10.1093/FORESTSCIENCE/52.6.670. |
[18] |
OZCELIK R, BROOKS J R, JIANG L C. Modeling stem profile of Lebanon cedar, Brutian pine, and Cilicica fir in Southern Turkey using nonlinear mixed-effects models[J]. European Journal of Forest Research, 2011,130(4):613-621. DOI: 10.1007/S10342-010-0453-5.
doi: 10.1007/s10342-010-0453-5 |
[19] |
KOZAK A. My last words on taper equations[J]. Forestry Chronicle, 2004,80(4):507-515. DOI: 10.5558/TFC80507-4.
doi: 10.5558/tfc80507-4 |
[20] |
DOYOG N D, LEE Y J, LEE S J, et al. Compatible taper and stem volume equations for Larix kaempferi (Japanese larch) species of South Korea[J]. Journal of Mountain Science, 2017,14(7):1341-1349. DOI: 10.1007/S11629-016-4291-X.
doi: 10.1007/s11629-016-4291-x |
[21] | MAX T A, BURKHART H E. Segmented polynomial regression applied to taper equations[J]. Forest Science, 1976,22(3):283-289. DOI: 10.1093/FORESTSCIENCE/22.3.283. |
[22] |
KOENKER R, BASSETT G. Robust tests for heteroscedasticity based on regression quantiles[J]. Econometrica, 1982,50(1):43-61. DOI: 10.2307/1912528.
doi: 10.2307/1912528 |
[23] |
CADE B S, NOON B R. A gentle introduction to quantile regression for ecologists[J]. Frontiers in Ecology & the Environment, 2003,1(8):412-420. DOI: 10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2.
doi: 10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2 |
[24] | 辛士冬, 姜立春. 利用分位数回归模拟人工樟子松树干干形[J]. 北京林业大学学报, 2020,42(2):1-8. |
XIN S D, JIANG L C. Modeling stem taper profile for Pinus sylvestris plantations using nonlinear quantile regression[J]. Journal of Beijing Forestry University, 2020,42(2):1-8. DOI: 10.12171/j.1000-1522.20190014. | |
[25] | SAS Institute Inc. SAS/OR 9.22 User ‘s guide: mathematical programming[M]. Cary, NC: SAS Institute Inc, 2010. |
[26] |
CAO Q V, WANG J. Evaluation of methods for calibrating a tree taper equation[J]. Forest Science, 2015,61(2):213-219. DOI: 10.5849/FORSCI.14-008.
doi: 10.5849/forsci.14-008 |
[27] | RODRIGUEZ F, LIZARRALDE I, BRAVO F. Comparison of stem taper equations for eight major tree species in the Spanish Plateau[J]. Forest Systems, 2015,24(3). DOI: 10.5424/FS/2015243-06229. |
[1] | ZHAO Jinman, HAN Xinyue, CHENG Ruiming, ZHANG Zhidong. Health assessment of Larix gmelinii var. principis-rupprechtii and Pinus sylvestris var. mongolica plantations in Saihanba Nature Reserve [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 199-206. |
[2] | HAN Xinyu, GAO Lushuang, QIN Li, PANG Rongrong, LIU Mingqian, ZHU Yihong, TIAN Yiyu, ZHANG Jin. Effect of stand density on radial growth-climate relationship of Larix gmelinii [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 182-190. |
[3] | ZUO Zhuang, ZHANG Yun, CUI Xiaoyang. Early effects of fire on soil nitrogen content and form in Larix gmelinii forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 147-154. |
[4] | LU Wenyan, DONG Lingbo, TIAN Yuan, WANG Shashan, QU Xuanyi, WEI Wei, LIU Zhaogang. Modelling height-diameter curves of main species for natural forests based on species composition in Greater Khingan Mountains, northeast China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 157-165. |
[5] | GAO Yu, LI Jing, LIU Yang, WU Yahan, GONG Jiaxing, XIN Qirui. Application of structural equation model in growth of Larix gmelinii stand [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 38-46. |
[6] | ZHAO Kaige, ZHOU Zhenghu, JIN Ying, WANG Chuankuan. Effects of long-term nitrogen addition on soil carbon, nitrogen, phosphorus and extracellular enzymes in Larix gmelinii and Fraxinus mandshurica plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 177-184. |
[7] | NIE Luyi, DONG Lihu, LI Fengri, MIAO Zheng, XIE Longfei. Construction of taper equation for Larix olgensis based on two-level nonlinear mixed effects model [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 194-202. |
[8] | XIE Lihong, HUANG Qingyang, CAO Hongjie, YANG Fan, WANG Jifeng, NI Hongwei. Effects of climate warming on radial growth of Larix gmelinii in Wudalianchi, Heilongjiang Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 150-158. |
[9] | XIN Shidong, JIANG Lichun, MU Lin. Predictive model of stand tree layer additive carbon storage of Korean pine plantation in Heilongjiang Province, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 115-121. |
[10] | WANG Junjie, JIANG Lichun. Predicting crown width for Larix gmelinii based on linear quantiles groups [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 161-170. |
[11] | WANG Bing, ZHANG Pengjie, ZHANG Qiuliang. Characteristics of the soil aggregate and its organic carbon in different Larix gmelinii forest types [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 15-24. |
[12] | HE Pei, XIA Wanqi, JIANG Lichun. Stem taper modeling equation for dahurian larch based on nonparametric regression methods [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 184-192. |
[13] | ZHOU Sihan, ZHANG Yun, CUI Xiaoyang. Temporal and spatial dynamics of soil available potassium in a post-fire Larix gmelinii forest [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 141-147. |
[14] | WEI Yulong, ZHANG Qiuliang. Forest edge renewal of Larix gmelinii and its response to the environment [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(2): 165-172. |
[15] | GUAN Huiwen, DONG Xibin, ZHANG Tian, QU Hangfeng, WANG Zhiyong, RUAN Jiafu. Effects of thinning on hydrological properties of the natural secondary Larix gmelinii forest in the Daxing’an Mountains [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(06): 68-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||