JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (1): 69-80.doi: 10.12302/j.issn.1000-2006.202109037
Special Issue: 第二届中国林草计算机大会论文精选
Previous Articles Next Articles
HUANG Jian(), WU Dasheng, FANG Luming
Received:
2021-09-19
Accepted:
2021-11-02
Online:
2022-01-30
Published:
2022-02-09
CLC Number:
HUANG Jian, WU Dasheng, FANG Luming. Identification of sub-compartment forest type based on multi-source data and three-tier models[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 69-80.
Table 1
Classification and sample size of forest structure"
树种结构 forest structure | 样本信 息数量 sample size | 林型 forest type | 样本信 息数量 sample size |
---|---|---|---|
阔叶林 (含阔叶混交林) broad-leaved forest (including broad- leaved mixed forest) | 16 414 | 山核桃林 Carya cathayensis forest | 6 602 |
阔叶混交林 broad-leaved mixed forest | 4 644 | ||
其他硬阔林 other hard broad- leaved forest | 5 168 | ||
针叶林 coniferous forest | 15 550 | 马尾松林 Pinus massoniana forest | 5 965 |
杉木林 Cunninghamia lancelata forest | 9 585 | ||
经济林 no-woods forest | 18 601 | 毛竹林 Phyllosstachys edulis forest | 9 830 |
茶树林 Camellia sinensis forest | 8 771 |
Table 2
Spectral characteristic factor"
自变量 因子类别 category of independent variable factors | 自变量 因子名称 name of independent variable factors | 量符号或公式 variable or the formula | 中文名称 Chinese name |
---|---|---|---|
遥感影像 波段信息 band information of remote sensing image | B2 | B2 | 遥感影像像元值 |
B3 | B3 | ||
B4 | B4 | ||
B5 | B5 | ||
B6 | B6 | ||
B7 | B7 | ||
B8 | B8 | ||
B8A | B8A | ||
B11 | B11 | ||
B12 | B12 | ||
植被指数 vegetation index | RVI | B5/B4 | 比值植被指数 |
EVI | 2.5×(B8-B4)/(B8+ 6×B4-7.5×B2+1) | 增强型植被指数 | |
DVI | B8/B4 | 差值环境植被指数 | |
NDVI | (B8-B4)/(B8+B4) | 归一化植被指数 | |
光学波段 组合因子 optical band combination factor | B8A_B4 | (B8A-B4)/(B8A+B4) | |
B8A_B7 | (B8A-B7)/(B8A+B7) | ||
B7_B6 | (B7-B6)/(B7+B6) | ||
B8A_B5 | (B8A-B5)/(B8A+B5) | ||
B6_B5 | (B6-B5)/(B6+B5) | ||
B8A_B6 | (B8A-B6)/(B8A+B6) |
Table 4
Accuracy comparison based on three independent variable combination schemes and three classification models"
模型 model | 方案 plan | 用户精度/% UA | 总体 精度/% OA | 模型 训练 时间/s model training time | ||
---|---|---|---|---|---|---|
阔叶林 (含阔叶混交林) broad-leaved forest (including broad- leaved mixed forest) | 针叶林 coniferous forest | 经济林 no-woods forest | ||||
RF | 1 | 66.34 | 78.11 | 80.40 | 75.13 | 16.16 |
2 | 66.84 | 79.16 | 80.70 | 75.73 | 15.15 | |
3 | 67.86 | 79.38 | 81.21 | 76.31 | 18.90 | |
XGBoost | 1 | 70.94 | 79.74 | 83.84 | 78.44 | 49.45 |
2 | 71.75 | 80.22 | 84.02 | 78.92 | 52.89 | |
3 | 72.19 | 81.06 | 85.04 | 79.70 | 59.76 | |
LightGBM | 1 | 72.42 | 80.03 | 84.07 | 79.05 | 1.29 |
2 | 72.80 | 80.58 | 85.27 | 79.79 | 1.35 | |
3 | 73.96 | 81.71 | 85.93 | 80.76 | 1.45 |
Table 5
Model recognition accuracy of LightGBM scheme 4"
窗口大小 sliding window size | 用户精度/% UA | 总体 精度/% OA | ||
---|---|---|---|---|
阔叶林 (含阔叶混交林) broad-leaved mixed forest | 针叶林 coniferous forest | 经济林 no-woods forest | ||
3×3 | 73.69 | 81.25 | 87.15 | 80.99 |
7×7 | 73.79 | 82.52 | 87.22 | 81.43 |
11×11 | 74.04 | 81.82 | 86.87 | 81.17 |
15×15 | 73.79 | 81.71 | 86.95 | 81.09 |
19×19 | 73.81 | 81.73 | 86.57 | 80.95 |
23×23 | 73.90 | 81.45 | 86.71 | 80.95 |
27×27 | 73.77 | 81.21 | 86.51 | 80.76 |
31×31 | 73.57 | 80.99 | 86.19 | 80.51 |
35×35 | 74.00 | 80.95 | 86.05 | 80.59 |
39×39 | 74.10 | 80.80 | 86.35 | 80.68 |
43×43 | 73.98 | 81.08 | 86.32 | 80.71 |
47×47 | 73.94 | 81.06 | 86.23 | 80.66 |
51×51 | 74.06 | 80.64 | 86.32 | 80.61 |
Table 6
Accuracy comparison based on the LightGBM-4 and the three schemes with remote sensing factors and feature selection"
林型 forest type | 雷达遥感因子及特征选择方案 radar remote sensing factor and feature selection scheme | |||||
---|---|---|---|---|---|---|
方案A plan A | 方案B plan B | 方案C plan C | ||||
用户精度/% UA | 生产者精度/% PA | 用户精度/% UA | 生产者精度/% PA | 用户精度/% UA | 生产者精度/% PA | |
山核桃林 Carya cathayensis forest | 91.87 | 92.93 | 92.32 | 93.24 | 92.32 | 93.05 |
阔叶混交林 broad-leaved mixed forest | 63.36 | 59.96 | 62.93 | 59.79 | 63.22 | 58.97 |
其他硬阔林 other hard broad-leaved forest | 60.43 | 63.00 | 59.97 | 63.34 | 57.97 | 62.27 |
杉木林 Cunninghamia lanceolata forest | 85.93 | 81.79 | 86.28 | 81.82 | 86.42 | 81.47 |
毛竹林 Phyllosstachys edulis forest | 94.86 | 94.32 | 94.46 | 94.19 | 95.03 | 93.83 |
茶树林 Camellia sinensis forest | 92.27 | 92.27 | 92.76 | 93.03 | 92.15 | 93.31 |
马尾松林 Pinus massoniana forest | 69.77 | 75.51 | 69.94 | 75.79 | 69.14 | 75.86 |
总体精度/% OA | 83.08 | 83.21 | 82.91 | |||
Kappa系数 | 0.80 | 0.80 | 0.80 |
[1] | 樊雪, 刘清旺, 谭炳香. 基于机载PHI高光谱数据的森林优势树种分类研究[J]. 国土资源遥感, 2017, 29(2):110-116. |
FAN X, LIU Q W, TAN B X. Classification of forest species using airborne PHI hyperspectral data[J]. Remote Sens Land Resour, 2017, 29(2):110-116.DOI: 10.6046/gtzyyg.2017.02.16.
doi: 10.6046/gtzyyg.2017.02.16 |
|
[2] | 王佳, 张隆裕, 吕春东, 等. 基于地面激光雷达点云数据的树种识别方法[J]. 农业机械学报, 2018, 49(11):180-188. |
WANG J, ZHANG L Y, LYU C D, et al. Tree species identification methods based on point cloud data using ground-based LiDAR[J]. Trans Chin Soc Agric Mach, 2018, 49(11):180-188.DOI: 10.6041/j.issn.1000-1298.2018.11.021.
doi: 10.6041/j.issn.1000-1298.2018.11.021 |
|
[3] | 李煜, 李崇贵, 刘思涵, 等. 应用哨兵2A多时相遥感影像对树种的识别[J]. 东北林业大学学报, 2021, 49(3):44-47,51. |
LI Y, LI C G, LIU S H, et al. Tree species recognition with sentinel-2A multitemporal remote sensing Image[J]. J Northeast For Univ, 2021, 49(3):44-47,51.DOI: 10.13759/j.cnki.dlxb.2021.03.008.
doi: 10.13759/j.cnki.dlxb.2021.03.008 |
|
[4] | 张悦楠, 房磊, 乔泽宇, 等. 亚热带常绿林型遥感识别及尺度效应[J]. 生态学杂志, 2020, 39(5):1636-1650. |
ZHANG Y N, FANG L, QIAO Z Y, et al. Remote sensing-based identification of forest types and the scale effect in subtropical evergreen forests[J]. Chin J Ecol, 2020, 39(5):1636-1650.DOI: 10.13292/j.1000-4890.202005.016.
doi: 10.13292/j.1000-4890.202005.016 |
|
[5] | 蔡林菲, 吴达胜, 方陆明, 等. 基于XGBoost的高分二号影像树种识别[J]. 林业资源管理, 2019(5):44-51. |
CAI L F, WU D S, FANG L M, et al. Tree species identification using XGBoost based on GF-2 Image[J]. For Resour Manag, 2019(5):44-51.DOI: 10.13466/j.cnki.lyzygl.2019.05.009.
doi: 10.13466/j.cnki.lyzygl.2019.05.009 |
|
[6] | 刘丽娟, 庞勇, 范文义, 等. 机载LiDAR和高光谱融合实现温带天然林树种识别[J]. 遥感学报, 2013, 17(3):679-695. |
LIU L J, PANG Y, FAN W Y, et al. Fused airborne LiDAR and hyperspectral data for tree species identification in a natural temperate forest[J]. J Remote Sens, 2013, 17(3):679-695. | |
[7] | 赵颖慧, 张大力, 甄贞. 基于非参数分类算法和多源遥感数据的单木树种分类[J]. 南京林业大学学报(自然科学版), 2019, 43(5):103-112. |
ZHAO Y H, ZHANG D L, ZHEN Z. Individual tree species classification based on nonparametric classification algorithms and multi-source remote sensing data[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(5):103-112.DOI: 10.3969/j.issn.1000-2006.201810041.
doi: 10.3969/j.issn.1000-2006.201810041 |
|
[8] | 王瑞瑞, 李文静, 石伟, 等. 基于多源遥感数据的输电线走廊树种分类[J]. 农业机械学报, 2021, 52(3):226-233. |
WANG R R, LI W J, SHI W, et al. Tree species classification of power line corridor based on multi-source remote sensing Data[J]. Trans Chin Soc Agric Mach, 2021, 52(3):226-233. | |
[9] | 徐逸, 甄佳宁, 蒋侠朋, 等. 无人机遥感与XGBoost的红树林物种分类[J]. 遥感学报, 2021, 25(3):737-752. |
XU Y, ZHEN J N, JIANG X P, et al. Mangrove species classification with UAV-based remote sensing data and XGBoost[J]. Natl Remote Sens Bull, 2021, 25(3):737-752. | |
[10] | 皋厦, 申鑫, 代劲松, 等. 结合LiDAR单木分割和高光谱特征提取的城市森林树种分类[J]. 遥感技术与应用, 2018, 33(6):1073-1083. |
GAO S, SHEN X, DAI J S, et al. Tree species classification in urban forests based on LiDAR point cloud segmentation and hyperspectral metrics extraction[J]. Remote Sens Technol Appl, 2018, 33(6):1073-1083.DOI: 10.11873/j.issn.1004-0323.2018.6.1073.
doi: 10.11873/j.issn.1004-0323.2018.6.1073 |
|
[11] |
PERSSON M, LINDBERG E, REESE H. Tree species classification with multi-temporal sentinel-2 data[J]. Remote Sens, 2018, 10(11):1794.DOI: 10.3390/rs10111794.
doi: 10.3390/rs10111794 |
[12] |
DALPONTE M, BRUZZONE L, GIANELLE D. Tree species classification in the Southern Alps based on the fusion of very high geometrical resolution multispectral/hyperspectral images and LiDAR data[J]. Remote Sens Environ, 2012, 123:258-270.DOI: 10.1016/j.rse.2012.03.013.
doi: 10.1016/j.rse.2012.03.013 |
[13] | 田颖, 陈卓奇, 惠凤鸣, 等. 欧空局哨兵卫星Sentinel-2A/B数据特征及应用前景分析[J]. 北京师范大学学报(自然科学版), 2019, 55(1):57-65. |
TIAN Y, CHEN Z Q, HUI F M, et al. ESA Sentinel-2A/B satellite:characteristics and applications[J]. J Beijing Norm Univ (Nat Sci), 2019, 55(1):57-65.DOI: 10.16360/j.cnki.jbnuns.2019.01.007.
doi: 10.16360/j.cnki.jbnuns.2019.01.007 |
|
[14] | 邱布布, 徐丽华, 张茂震, 等. 基于Landsat OLI和ETM+的杭州城市绿地地上生物量估算比较研究[J]. 西北林学院学报, 2018, 33(1):225-232. |
QIU B B, XU L H, ZHANG M Z, et al. Estimation of above-ground biomass of urban green land in Hangzhou based on landsat OLI and ETM+ data[J]. J Northwest For Univ, 2018, 33(1):225-232.DOI: 10.3969/j.issn.1001-7461.2018.01.37.
doi: 10.3969/j.issn.1001-7461.2018.01.37 |
|
[15] |
LIM J, KIM K M, KIM E H, et al. Machine learning for tree species classification using sentinel-2 spectral information,crown texture,and environmental variables[J]. Remote Sens, 2020, 12(12):2049.DOI: 10.3390/rs12122049.
doi: 10.3390/rs12122049 |
[16] | 傅锋, 王新杰, 汪锦, 等. 高分二号影像树种识别及龄组划分[J]. 国土资源遥感, 2019, 31(2):118-124. |
FU F, WANG X J, WANG J, et al. Tree species and age groups classification based on GF-2 image[J]. Remote Sens Land &Resour, 2019, 31(2):118-124.DOI: 10.6046/gtzyyg.2019.02.17.
doi: 10.6046/gtzyyg.2019.02.17 |
|
[17] | 郝泷, 陈永富, 刘华, 等. 基于纹理信息CART决策树的林芝县森林植被面向对象分类[J]. 遥感技术与应用, 2017, 32(2):386-394. |
HAO ( L /S), CHEN Y F, LIU H, et al. Object-oriented forest classification of Linzhi County based on CART decision tree with texture information[J]. Remote Sens Technol Appl, 2017, 32(2):386-394.DOI: 10.11873/j.issn.1004-0323.2017.2.0386.
doi: 10.11873/j.issn.1004-0323.2017.2.0386 |
|
[18] | 吕杰, 郝宁燕, 李崇贵, 等. 利用随机森林和纹理特征的森林类型识别[J]. 遥感信息, 2017, 32(6):109-114. |
LV J, HAO N Y, LI C G, et al. Identification of forest type based on random forest and texture Characteristics[J]. Remote Sens Inf, 2017, 32(6):109-114. | |
[19] | 杜雨菲, 吴保国, 陈玉玲. 基于机器学习算法的广西桉树适宜性研究[J]. 浙江农林大学学报, 2020, 37(1):122-128. |
DU Y F, WU B G, CHEN Y L. Eucalyptus suitability in Guangxi based on machine learning algorithms[J]. J Zhejiang A&F Univ, 2020, 37(1):122-128.DOI: 10.11833/j.issn.2095-0756.2020.01.016.
doi: 10.11833/j.issn.2095-0756.2020.01.016 |
|
[20] | 孙杰杰, 沈爱华, 黄玉洁, 等. 浙江省大叶榉树生境地群落数量分类与排序[J]. 南京林业大学学报(自然科学版), 2019, 43(4):85-93. |
SUN J J, SHEN A H, HUANG Y J, et al. Quantitative classification and ordination of Zelkova schneideriana habitat in Zhejiang Province[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(4):85-93.DOI: 10.3969/j.issn.1000-2006.201809027.
doi: 10.3969/j.issn.1000-2006.201809027 |
|
[21] | 刘博文, 戴永寿, 金久才, 等. 基于空间分布与统计特性的海面远景目标检测方法[J]. 海洋科学, 2018, 42(1):88-92. |
LIU B W, DAI Y S, JIN J C, et al. Marine farsighted target-detection method based on spatial distribution and statistical characteristics[J]. Mar Sci, 2018, 42(1):88-92.DOI: 10.11759/hykx20171011005.
doi: 10.11759/hykx20171011005 |
|
[22] | 林海军, 张绘芳, 高亚琪, 等. 基于马氏距离法的荒漠树种高光谱识别[J]. 光谱学与光谱分析, 2014, 34(12):3358-3362. |
LIN H J, ZHANG H F, GAO Y Q, et al. Mahalanobis distance based hyperspectral characteristic discrimination of leaves of different desert tree species[J]. Spectrosc Spectr Anal, 2014, 34(12):3358-3362.DOI: 10.3964/j.issn.1000-0593(2014)12-3358-05.
doi: 10.3964/j.issn.1000-0593(2014)12-3358-05 |
|
[23] | 陶江玥, 刘丽娟, 庞勇, 等. 基于机载激光雷达和高光谱数据的树种识别方法[J]. 浙江农林大学学报, 2018, 35(2):314-323. |
TAO J Y, LIU L J, PANG Y, et al. Automatic identification of tree species based on airborne LiDAR and hyperspectral data[J]. J Zhejiang A F Univ, 2018, 35(2):314-323. | |
[24] | 陈继龙, 魏雪馨, 刘洋, 等. 基于多时相遥感观测的板栗林分布提取研究[J]. 遥感技术与应用, 2020, 35(5):1226-1236. |
CHEN J L, WEI X X, LIU Y, et al. Extraction of chestnut forest distribution based on multi-temporal remote sensing Observations[J]. Remote Sens Technol Appl, 2020, 35(5):1226-1236. | |
[25] |
张沁雨, 李哲, 夏朝宗, 等. 高分六号遥感卫星新增波段下的树种分类精度分析[J]. 地球信息科学学报, 2019, 21(10):1619-1628.
doi: 10.12082/dqxxkx.2019.190116 |
ZHANG Q Y, LI Z, XIA C Z, et al. Tree species classification based on the new bands of GF-6 remote sensing satellite[J]. J Geo Inf Sci, 2019, 21(10):1619-1628. | |
[26] | BOLYN C, MICHEZ A, GAUCHER P, et al. Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery[J]. Biotechnol Agron Société et Environnement, 2018, 22(3):172-187. |
[27] |
TRAN A T, NGUYEN K A, LIOU Y A, et al. Classification and observed seasonal phenology of broadleaf deciduous forests in a tropical region by using multitemporal sentinel-1A and landsat 8 data[J]. Forests, 2021, 12(2):235.DOI: 10.3390/f12020235.
doi: 10.3390/f12020235 |
[28] |
WAN H M, TANG Y W, JING L H, et al. Tree species classification of forest stands using multisource remote sensing data[J]. Remote Sens, 2021, 13(1):144.DOI: 10.3390/rs13010144.
doi: 10.3390/rs13010144 |
[29] | 胥为, 周云轩, 沈芳, 等. 基于Sentinel-1A雷达影像的崇明东滩芦苇盐沼植被识别提取[J]. 吉林大学学报(地球科学版), 2018, 48(4):1192-1200. |
XU W, ZHOU Y X, SHEN F, et al. Recognition and extraction of Phragmites australis salt marsh vegetation in Chongming tidal flat from sentinel-1A SAR Data[J]. J Jilin Univ (Earth Sci Ed), 2018, 48(4):1192-1200.DOI: 10.13278/j.cnki.jjuese.20170004.
doi: 10.13278/j.cnki.jjuese.20170004 |
[1] | ZHAO Ting, BAI Hongying, DENG Chenhui, TA Zhijie. A quantitative divided method for the vegetation vertical belt based on NDVI and DEM: a case study of Taibai Mountain on the south slope [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 165-171. |
[2] | CAO Lin, ZHU Xingzhou, DAI Jinsong, XU Ziqian, SHE Guanghui. Error analysis of DEM interpolation based on small-footprint airborne LiDAR in subtropical hilly forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(04): 7-13. |
[3] | XU Maosong, LI Kun, XIE Chou, ZHU Song, LUO Hongzhang, ZHANG Fengli, WANG Xuejun, XIA Zhongsheng, DANG Yongfeng. Synergistically monitoring the snowstorm damaged forest with polarimetric SAR and optical remote sensing data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(04): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||