JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (3): 109-116.doi: 10.12302/j.issn.1000-2006.202101025
Previous Articles Next Articles
LYU Feng1(), XIE Xiaoman1,2, HAN Biao2, LU Yizeng2, WANG Lei2, DONG Xin2, WANG Yan2, LU Lu2, LIU Li1, ZONG Shaoning2, LI Wenqing1,2,*()
Received:
2021-01-19
Accepted:
2021-07-13
Online:
2022-05-30
Published:
2022-06-10
Contact:
LI Wenqing
E-mail:1148080865@qq.com;liwenqing0686@shandong.cn
CLC Number:
LYU Feng, XIE Xiaoman, HAN Biao, LU Yizeng, WANG Lei, DONG Xin, WANG Yan, LU Lu, LIU Li, ZONG Shaoning, LI Wenqing. Genetic diversity analyses of Quercus acutissima based on SSR markers[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 109-116.
Table 1
Basic information of sampling points"
编号 ID | 群体 population | 东经/(°) longitude (E) | 北纬/(°) latitude (N) | 样本个数 samples size |
---|---|---|---|---|
HN | 河南南阳 | 113.23 | 32.49 | 12 |
LN | 辽宁大连、鞍山 | 121.52 | 39.46 | 30 |
SX | 山西运城 | 111.52 | 35.02 | 3 |
JD | 山东1(鲁东) | 121.20 | 36.86 | 19 |
YN | 云南大理 | 100.92 | 25.35 | 3 |
LZN | 山东2(鲁中南) | 117.02 | 36.14 | 42 |
HB | 河北秦皇岛 | 119.46 | 39.82 | 32 |
JS | 江苏连云港、新沂、南京 | 118.34 | 34.20 | 9 |
Table 2
The information of 18 SSR primers"
位点 locus | 引物序列(5'-3') primer sequence(5'-3') | 退火温度/℃ annealing temperature | 位点 locus | 引物序列(5'-3') primer sequence(5'-3') | 退火温度/℃ annealing temperature |
---|---|---|---|---|---|
MSQ13 | F:TGGCTGCACCTATGGCTCTTAG R: ACACTCAGACCCACCATTTTTCC | 54 | QV11 | F:ACCAATGTGAAAAGGGAAG R:TGGGTTTGGTTTCTTCTTCT | 55 |
MSQ16 | F:GGAACAACTAGAGAGAAC R:TTGCCTATCCTGCCCCGTAT | 52 | QV12 | F:CAGCTCTGGATGGATATAATG R:ACATGCATGGAGAGAAATAGA | 55 |
QM58TGT | F:GGTCAGTGTATTTTGTTGGT R:AAATGTATTTTGCTTGCTCA | 52 | QV14 | F:AGAGCAATTCCCAACTAACTT R:TAGTTCAAGATCTGAGCCAAA | 55 |
QpZAG36 | F:GATCAAAATTTGGAATATTAAGAGAG R:ACTGTGGTGGTGAGTCT AACATGTAG | 57 | QrZAG112 | F:TTCTTGCTTTGGTGCGCG R:GTGGTCAGAGACTCGGTAAGTATTC | 45 |
QpZAG110 | F:GGAGGCTTCCTTCAACCTACT R:GATCTCTTGTGTGCTGTATTT | 49 | QV3 | F:TATCTTTTGTGGGGGAAGATA R:AGAAGGCCTCATCTTTCTTTA | 55 |
QrZAG7 | F:CAACTTGGTGTTCGGATCAA R:GTGCATTTCTTTTATAGCATTCAC | 51 | QV10 | F:TGCCTTATTGTTGATGCTG R:CAAAATCCAAAAGGCCAAAC | 55 |
QV4 | F:ATTCATTTTTCTCCACCAAA R:CCATTATGATTGGATTAGGG | 55 | GA-1H14 | F:GCTTGGGCTTGTTCCTACT R:CAACACTTCTCATGGATTAGAGA | 58 |
QV6 | F:CGCTTGCCACAATAGTAATAA R:AAGTACCAAAAATGACAATG | 55 | GA-Oi21 | F:ATATGGTCCCGATTAATTC R: GGGCAACATTCAAATGTATCTA | 50 |
QV8 | F:CCTGCTTCCAATATTCTCATA R:GCAAAATCACTCATCAAGAAC | 55 | QM67-3Ml | F:GCGTCGGTGGCGGCTTAGAGATT R: TGGCTTATCCAATGTTTGTGATT | 55 |
Table 3
Genetic diversity, F test and gene flow estimation of 18 SSR loci"
位点 locus | 样本量 sample size | Na | Ne | I | Ho | He | F | Fst | Nm |
---|---|---|---|---|---|---|---|---|---|
QV8 | 5.500 | 3.625 | 2.675 | 0.985 | 0.742 | 0.514 | -0.484 | 0.399 | 0.377 |
QV10 | 9.750 | 5.500 | 3.733 | 1.312 | 0.875 | 0.629 | -0.458 | 0.298 | 0.589 |
MSQ13 | 3.000 | 3.125 | 2.771 | 0.911 | 0.750 | 0.495 | -0.583 | 0.437 | 0.323 |
MSQ16 | 9.375 | 9.875 | 6.944 | 2.025 | 1.000 | 0.841 | -0.193 | 0.070 | 3.312 |
QV11 | 8.625 | 4.500 | 3.429 | 1.292 | 1.000 | 0.691 | -0.473 | 0.175 | 1.176 |
QrZAG7 | 13.625 | 6.250 | 3.916 | 1.451 | 0.875 | 0.673 | -0.304 | 0.218 | 0.897 |
GA-1H14 | 5.750 | 7.250 | 5.889 | 1.654 | 0.875 | 0.719 | -0.224 | 0.229 | 0.842 |
QV6 | 2.750 | 2.875 | 2.217 | 0.852 | 0.625 | 0.448 | -0.397 | 0.511 | 0.240 |
QM67-3M1 | 8.750 | 2.000 | 1.778 | 0.632 | 0.875 | 0.444 | -0.974 | 0.288 | 0.619 |
QPZAG36 | 2.375 | 3.125 | 2.764 | 0.936 | 0.750 | 0.503 | -0.560 | 0.452 | 0.303 |
QRZAG112 | 11.625 | 4.875 | 3.670 | 1.356 | 1.000 | 0.711 | -0.432 | 0.134 | 1.620 |
QPZAG110 | 11.625 | 8.625 | 5.292 | 1.713 | 1.000 | 0.749 | -0.404 | 0.134 | 1.622 |
QV3 | 12.375 | 7.000 | 4.675 | 1.626 | 1.000 | 0.760 | -0.335 | 0.108 | 2.073 |
QV4 | 8.500 | 5.375 | 3.791 | 1.398 | 1.000 | 0.709 | -0.445 | 0.134 | 1.616 |
QM58TGT | 12.375 | 13.125 | 9.547 | 2.267 | 1.000 | 0.861 | -0.176 | 0.092 | 2.465 |
QV14 | 8.000 | 7.625 | 5.587 | 1.748 | 1.000 | 0.775 | -0.333 | 0.141 | 1.525 |
GA-Oi21b | 10.125 | 3.500 | 2.559 | 0.976 | 0.750 | 0.519 | -0.460 | 0.397 | 0.380 |
QV12 | 2.500 | 3.000 | 2.643 | 0.949 | 1.000 | 0.579 | -0.784 | 0.319 | 0.534 |
平均mean | 8.146 | 5.625 | 4.104 | 1.338 | 0.895 | 0.645 | -0.441 | 0.252 | 1.140 |
Table 4
Genetic diversity of Quercus acutissima population"
群体 popula- tion | 样本量 sample size | Na | Ne | I | Ho | He | F | PPPL/% |
---|---|---|---|---|---|---|---|---|
HB | 12.833 | 6.611 | 4.497 | 1.483 | 0.944 | 0.696 | -0.403 | 94.44 |
HN | 5.111 | 5.278 | 4.080 | 1.427 | 0.944 | 0.696 | -0.389 | 94.44 |
JD | 7.611 | 6.333 | 4.586 | 1.514 | 1.000 | 0.724 | -0.437 | 100.00 |
JS | 3.611 | 4.333 | 3.595 | 1.202 | 0.833 | 0.600 | -0.432 | 83.33 |
LN | 13.778 | 7.333 | 5.162 | 1.569 | 0.944 | 0.711 | -0.372 | 94.44 |
LZN | 19.556 | 10.389 | 6.405 | 1.929 | 0.996 | 0.805 | -0.256 | 100.00 |
SX | 1.278 | 2.444 | 2.407 | 0.831 | 0.778 | 0.491 | -0.648 | 77.78 |
YN | 1.389 | 2.278 | 2.102 | 0.748 | 0.722 | 0.441 | -0.694 | 72.22 |
平均 mean | 8.146 | 5.625 | 4.104 | 1.338 | 0.895 | 0.645 | -0.441 | 89.58 |
Table 6
Genetic identity and genetic distance of eight natural populations of Q. acutissima"
群体 population | HB | HN | JD | JS | LN | LZN | SX | YN |
---|---|---|---|---|---|---|---|---|
HB | — | 0.501 | 0.657 | 0.624 | 0.775 | 0.755 | 0.314 | 0.246 |
HN | 0.691 | — | 0.508 | 0.436 | 0.529 | 0.619 | 0.435 | 0.474 |
JD | 0.420 | 0.677 | — | 0.555 | 0.751 | 0.775 | 0.347 | 0.291 |
JS | 0.471 | 0.830 | 0.589 | — | 0.616 | 0.702 | 0.231 | 0.205 |
LN | 0.255 | 0.637 | 0.286 | 0.484 | — | 0.801 | 0.321 | 0.281 |
LZN | 0.281 | 0.480 | 0.255 | 0.354 | 0.222 | — | 0.413 | 0.343 |
SX | 1.159 | 0.833 | 1.057 | 1.465 | 1.135 | 0.885 | — | 0.311 |
YN | 1.403 | 0.746 | 1.235 | 1.587 | 1.271 | 1.071 | 1.167 | — |
[1] |
DENK T, GRIMM G W, MANOS P S, et al. An updated infrageneric classification of the iaks:review of previous taxonomic schemes and synthesis of evolutionary patterns[C]// Oaks physiological ecology exploring functional diversity genus Quercus L. Switzerland: Springer International Publishing, 2017:13-38.DOI: 10.1007/978-3-319-69099-5_2.
doi: 10.1007/978-3-319-69099-5_2 |
[2] | 徐立安. 栎属群体与进化遗传研究进展[J]. 南京林业大学学报(自然科学版), 2002, 26(6):73-77. |
XU L A. Developments in population and evolutionary genetics within the genus Quercus L[J]. J Nanjing For Univ (Nat Sci Ed), 2002, 26(6):73-77.DOI: 10.3969/j.issn.1000-2006.2002.06.019.
doi: 10.3969/j.issn.1000-2006.2002.06.019 |
|
[3] | 刘志龙, 虞木奎, 唐罗忠, 等. 麻栎资源研究进展及开发利用对策[J]. 中国林副特产, 2009(6):93-96. |
LIU Z L, YU M K, TANG L Z, et al. Progress and utilization countermeasure of Quercus acutissima[J]. For Prod Speciality China, 2009(6):93-96.DOI: 10.3969/j.issn.1001-6902.2009.06.045.
doi: 10.3969/j.issn.1001-6902.2009.06.045 |
|
[4] | 袁久志, 孙启时. 麻栎叶的化学成分研究[J]. 沈阳药科大学学报, 1999, 16(1):60-62. |
YUAN J Z, SUN Q S. A study on the chemical constituents of the leaves of Quercus acutissima Carruth[J]. J Shenyang Pharm Univ, 1999, 16(1):60-62.DOI: 10.3969/j.issn.1006-2858.1999.01.015.
doi: 10.3969/j.issn.1006-2858.1999.01.015 |
|
[5] | 赵丹. 麻栎组培和扦插繁殖技术研究[D]. 南京: 南京林业大学, 2010. |
ZHAO D. The research of propagation technique of tissue culture and cutting of Quercus acutissima[D]. Nanjing: Nanjing Forestry University, 2010. | |
[6] | 董章凯, 邢世岩, 王亚明, 等. 麻栎半同胞家系苗期特性分析[J]. 东北林业大学学报, 2011, 39(4):27-28,36. |
DONG Z K, XING S Y, WANG Y M, et al. Seedling traits of Quercus acutissima from different half-sib families[J]. J Northeast For Univ, 2011, 39(4):27-28,36.DOI: 10.13759/j.cnki.dlxb.2011.04.036.
doi: 10.13759/j.cnki.dlxb.2011.04.036 |
|
[7] | 董玉峰. 麻栎群体内变异性和优良家系、无性系选择研究[D]. 泰安: 山东农业大学, 2008. |
DONG Y F. Study on variation among Quercus acutissima population and selection of its families and clones[D]. Taian: Shandong Agricultural University, 2008. | |
[8] | 叶青雷, 曾宪云. 麻栎SRAP-PCR体系优化与遗传多样性分析[J]. 生物技术, 2009, 19(3):24-27. |
YE Q L, ZENG X Y. Optimization of SRAP-PCR system and genetic diversity analysis in Quercus acutissima Carr[J]. Biotechnology, 2009, 19(3):24-27.DOI: 10.16519/j.cnki.1004-311x.2009.03.028.
doi: 10.16519/j.cnki.1004-311x.2009.03.028 |
|
[9] | 彭礼琼, 金则新, 祁彩虹, 等. 麻栎ISSR-PCR扩增条件的优化[J]. 江苏农业科学, 2011, 39(4):30-32. |
PENG L Q, JIN Z X, QI C H, et al. Optimization of ISSR-PCR amplification conditions of Quercus acutissima[J]. Jiangsu Agric Sci, 2011, 39(4):30-32.DOI: 10.15889/j.issn.1002-1302.2011.04.180.
doi: 10.15889/j.issn.1002-1302.2011.04.180 |
|
[10] | 孟旭. 麻栎的谱系地理学和遗传多样性研究[D]. 西安: 西北大学, 2017. |
MENG X. Study on phylogeography and population genetics structure of Quercus acutissima Carr[D]. Xi’an: Northwest University, 2017. | |
[11] | 徐小林, 徐立安, 黄敏仁, 等. 栓皮栎天然群体SSR遗传多样性研究[J]. 遗传, 2004, 26(5):683-688. |
XU X L, XU L A, HUANG M R, et al. Genetic diversity of microsatellites(SSRs)of natural populations of Quercus variabilis[J]. Hereditas, 2004, 26(5):683-688.DOI: 10.16288/j.yczz.2004.05.023.
doi: 10.16288/j.yczz.2004.05.023 |
|
[12] | 秦英英, 韩海荣, 康峰峰, 等. 基于SSR标记的山西省辽东栎自然居群遗传多样性分析[J]. 北京林业大学学报, 2012, 34(2):61-65. |
QIN Y Y, HAN H R, KANG F F, et al. Genetic diversity in natural populations of Quercus liaotungensis in Shanxi Province based on nuclear SSR markers[J]. J Beijing For Univ, 2012, 34(2):61-65.DOI: 10.13332/j.1000-1522.2012.02.022.
doi: 10.13332/j.1000-1522.2012.02.022 |
|
[13] | 王雁红, 俞琦, 杨佳, 等. 基于核微卫星的短柄枹栎居群遗传多样性和遗传结构[J]. 林业科学, 2015, 51(12):121-131. |
WANG Y H, YU Q, YANG J, et al. Genetic diversity and population structure of Quercus serrata var.brevipetiolata revealed by nSSR markers[J]. Sci Silvae Sin, 2015, 51(12):121-131.DOI: 10.11707/j.1001-7488.20151215.
doi: 10.11707/j.1001-7488.20151215 |
|
[14] | 李文英, 顾万春, 周世良. 蒙古栎天然群体遗传多样性的AFLP分析[J]. 林业科学, 2003, 39(5):29-36. |
LI W Y, GU W C, ZHOU S L. AFLP analysis on genetic diversity of Quercus mongolica populations[J]. Sci Silvae Sin, 2003, 39(5):29-36.DOI: 10.3321/j.issn:1001-7488.2003.05.005.
doi: 10.3321/j.issn:1001-7488.2003.05.005 |
|
[15] | 陈怀琼, 隋春, 魏建和. 植物SSR引物开发策略简述[J]. 分子植物育种, 2009, 7(4):845-851. |
CHEN H Q, SUI C, WEI J H. Summary of strategies for developing SSR primer[J]. Mol Plant Breed, 2009, 7(4):845-851.DOI: 10.3969/mpb.007.000845.
doi: 10.3969/mpb.007.000845 |
|
[16] |
SULLIVAN A R, LIND J F, MCCLEARY T S, et al. Development and characterization of genomic and gene-based microsatellite markers in north American red oak species[J]. Plant Mol Biol Report, 2013, 31(1):231-239.DOI: 10.1007/s11105-012-0495-6.
doi: 10.1007/s11105-012-0495-6 |
[17] |
PEAKALL R, SMOUSE P E. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research: an update[J]. Bioinformatics, 2012, 28(19): 2537-2539. DOI: 10.1093/bioinformatics/bts460.
doi: 10.1093/bioinformatics/bts460 |
[18] |
SLATKIN M, BARTON N H. A comparison of three indirect methods for estimating average levels of gene flow[J]. Evolution, 1989, 43(7):1349-1368. DOI: 10.2307/2409452.
doi: 10.2307/2409452 |
[19] |
PRITCHARD J K, STEPHENS M, DONNELLY P. Inference of Population structure using multilocus genotype data[J]. Genetics, 2000, 155(4):9197-9201. DOI: 10.1093/genetics/155.2.945.
doi: 10.1093/genetics/155.2.945 |
[20] |
SUDHIR K, GLEN S, KOICHIRO T. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mo Biol & Evol, 2016(7):1870. DOI: 10.1093/molbev/msw054.
doi: 10.1093/molbev/msw054 |
[21] | 张昊. 中国栎属麻栎组三个近缘物种的群体遗传学和种群动态历史研究[D]. 西安: 西北大学, 2018. |
ZHANG H. Study on population genetics and demographic history of the three closely related species of Section Aegilops occurred in China[D]. Xi’an: Northwest University, 2018. | |
[22] |
GAO J, LIU Z L, ZHAO W, et al. Combined genotype and phenotype analyses reveal patterns of genomic adaptation to local environments in the subtropical oak Quercus acutissima[J]. J Syst Evol, 2021, 59(3):541-556.DOI: 10.1111/jse.12568.
doi: 10.1111/jse.12568 |
[23] | 杨梅, 张敏, 师守国, 等. 武当木兰种群遗传结构的ISSR分析[J]. 林业科学, 2014, 50(1):76-81. |
YANG M, ZHANG M, SHI S G, et al. Analysis of genetic structure of Magnolia sprengeri populations based on ISSR markers[J]. Sci Silvae Sin, 2014, 50(1):76-81.DOI: 10.11707/j.1001-7488.20140112.
doi: 10.11707/j.1001-7488.20140112 |
|
[24] | 巨苗苗. 基于SLAF-seq技术的高山栎组植物系统发育和群体遗传学研究[D]. 西安: 西北大学, 2020. |
JU M M. Research on the phylogeny and population genetics of Quercus Sect. Heterobalanus based on the SLAF-seq[D]. Xi’an: Northwest University, 2020. | |
[25] |
MURAWSKI D A, HAMRICK J L. The effect of the density of flowering individuals on the mating systems of nine tropical tree species[J]. Heredity, 1991, 67(2):167-174.DOI: 10.1038/hdy.1991.76.
doi: 10.1038/hdy.1991.76 |
[26] |
MURAWSKI D A, HAMRICK J L. The mating system of Cavanillesia platanifolia under extremes of flowering-tree density: a test of predictions[J]. Biotropica, 1992, 24(1):99.DOI: 10.2307/2388478.
doi: 10.2307/2388478 |
[27] |
文亚峰, UCHIYAMA K, 韩文军, 等. 微卫星标记中的无效等位基因[J]. 生物多样性, 2013, 21(1):117-126.
doi: 10.3724/SP.J.1003.2013.10133 |
WEN Y F, UCHIYAMA K, HAN W J, et al. Null alleles in microsatellite markers[J]. Biodivers Sci, 2013, 21(1):117-126.DOI: 10.3724/SP.J.1003.2013.10133.
doi: 10.3724/SP.J.1003.2013.10133 |
|
[28] |
JACQUEMYN H, HONNAY O, GALBUSERA P, et al. Genetic structure of the forest herb Primula elatior in a changing landscape[J]. Mol Ecol, 2004, 13(1):211-219.DOI: 10.1046/j.1365-294x.2003.02033.x.
doi: 10.1046/j.1365-294x.2003.02033.x. |
[29] |
KREMER A, PETIT R J. Gene diversity in natural populations of oak species[J]. Ann For Sci, 1993,50(Supplement):186s-202s.DOI: 10.1051/forest:19930717.
doi: 10.1051/forest:19930717 |
[30] | HAMRICK J, GODT M. Allozyme diversity in plant species[C]// BROWN A,CLEGG M.Plant population genetics, breeding and genetic resources, Sunderland M A: Sinauer, 1990:43-63. |
[31] | 伊贤贵, 陈洁, 尤禄祥, 等. 山樱花群体遗传多样性的SSR分析[J]. 南京林业大学学报(自然科学版), 2018, 42(5):25-31. |
YI X G, CHEN J, YOU L X, et al. Genetic divertsity of Cerasus serrulata populations assessed by SSR markers[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(5):25-31.DOI: 10.3969/j.issn.1000-2006.201702036.
doi: 10.3969/j.issn.1000-2006.201702036 |
|
[32] | 臧明月, 李璇, 方炎明. 基于SSR标记的白栎天然居群遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2021, 45(1):63-69. |
ZANG M Y, LI X, FANG Y M. Genetic diversity analysis among natural populations of Quercus fabri based on SSR markers[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):63-69.DOI: 10.12302/j.issn.1000-2006.202004049.
doi: 10.12302/j.issn.1000-2006.202004049 |
|
[33] |
SHI X M, WEN Q, CAO M, et al. Genetic diversity and structure of natural Quercus variabilis population in China as revealed by microsatellites markers[J]. Forests, 2017, 8(12):495.DOI: 10.3390/f8120495.
doi: 10.3390/f8120495 |
[34] | 徐小林. 栓皮栎群体遗传结构研究[D]. 南京: 南京林业大学, 2003. |
XU X L. Study on genetic structure of Quercus variabilis natural populations[D]. Nanjing: Nanjing Forestry University, 2003. |
[1] | LUO Qianqian, LI Fengqing, XIAO Deqing, DENG Zhangwen, WANG Jianhua, ZHOU Zhichun. Mating system analyses of two natural populations of Taxus wallichiana var. mairei [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 80-86. |
[2] | WANG Zhiyi, LI Zhenfang, PENG Chan, CHEN Ying, ZHANG Xinye. Genetic diversity analysis of Lagerstroemia indica based on fluorescent SSR markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 61-69. |
[3] | WANG Huanli, YAN Lingjun, HUANG Xi, WANG Zhongwei, TANG Shijie. Genetic diversity and genetic structure of Tilia miqueliana population [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 145-153. |
[4] | LI Huizhi, GUAN Qingwei, ZHAO Jiahao, LI Junjie, WANG Lei, LI Fengfeng, ZUO Xingping, CHEN Bin. Effects of topography on the soil fertility quality in Quercus acutissima plantation [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 161-168. |
[5] | FENG Yining, LI Yingang, QI Ming, ZHOU Pengyan, ZHOU Qi, DONG Le, XU Li’an. Genetic diversity analyses of Phoebe bournei representative populations in Fujian Province based on SSR markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 102-108. |
[6] | GE Dapeng, REN Yuan, ZHAO Jun, WANG Yuting, LIU Xueqing, YUAN Zhaohe. Genetic diversity among wild populations of pomegranate in Tibet by SSR analyses [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 127-133. |
[7] | HE Xudong, ZHENG Jiwei, JIAO Zhongyi, DOU Quanqin, HUANG Libin. Genetic diversity and structure analyses of Quercus shumardii populations based on SLAF-seq technology [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 81-87. |
[8] | GAO Jingbin, XU Liuyi, YE Jianren. Growth and genetic diversity analysis of clones screened by phenotypical resistant to pine wilt disease in Pinus massoniana [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 109-118. |
[9] | CHEN Xingbin, XU Haining, XIAO Fuming, SUN Shiwu, LOU Yongfeng, ZOU Yuanxi, XU Xiaoqiang. Genetic diversity and paternity analyses in a 1.5th generation seed orchard of Chenshan red-heart Chinese fir [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 87-92. |
[10] | ZANG Mingyue, LI Xuan, FANG Yanming. Genetic diversity analysis among natural populations of Quercus fabri based on SSR markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(1): 63-69. |
[11] | WANG Yingying, MA Yuying, ZHANG Yong, HUANG Zheng. Biodiversity and the risk of infectious diseases [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 9-11. |
[12] | QIAO Dongya, WANG Peng, WANG Shu’an, LI Linfang, GAO Lulu, YANG Rutong, WANG Qing, LI Ya. Genetic diversity analysis of Lagerstroemia germplasm resourcesbased on SNP markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(4): 18-25. |
[13] | LIN Yuan, CHEN Pei, ZHOU Mingming, SHANG Xulan, FANG Shengzuo. Key bioactive substances and their antioxidant activities in Cyclocarya paliurus (Batal.) Iljinskaja leaves collected from natural populations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(2): 10-16. |
[14] | SUN Yanxiao, WANG Xianrong, SUN Lei, JIA Ming. Genetic diversity analysis and fingerprint construction of fig(Ficus carica Linn.)cultivars by SSR markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(06): 197-202. |
[15] | FENG Yuanheng, YANG Zhangqi 1*, LI Huogen 2, XU Huilan. Changes of genetic gain & genetic diversity in the breeding process of Pinus massoniana [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(05): 196-200. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||