Cloning of EoNLA gene in Eremochloa ophiuroides and the transgenic Arabidopsis phenotypic characterization under various phosphorus levels

HE Qingqing, LIU Chuanqiang, LI Jianjian, WANG Jingjing, YAO Xiang, ZHOU Shenghao, CHEN Ying, WANG Haoran

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (3) : 134-142.

PDF(10255 KB)
PDF(10255 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (3) : 134-142. DOI: 10.12302/j.issn.1000-2006.2021006013

Cloning of EoNLA gene in Eremochloa ophiuroides and the transgenic Arabidopsis phenotypic characterization under various phosphorus levels

Author information +
History +

Abstract

【Obiectives】 Phosphorus is a macronutrient of plants which is essential for growth and development. Nitrogen limitation adaptation (NLA), a RING-type E3 ubiquitin ligase involved in the ubiquitin regulation of phosphorus transporters, plays an important role in the regulation of phosphorus balance in plants. 【Method】In this study, we used Eremochloa ophiuroides, which naturally adapts to low-phosphorus soil conditions, to clone the EoNLA gene using RACE. 【Result】The EoNLA gene is 1 353 bp long and encodes a protein of 331 amino acids. Amino acid sequence analysis showed that the NLA protein had a typical RING domain and an SPX domain. Cell membrane localization of the EoNLA protein was observed using a protoplast transient expression system. Agrobacterium-mediated transformation of Arabidopsis thaliana was carried out to verify gene function 【Conclusion】The qRT-PCR analysis showed that expression levels of EoNLA were significantly higher in roots than in stems and leaves, suggesting that EoNLA expression is root-specific. Furthermore, functional identification based on Arabidopsis thaliana transgenic plants suggested that EoNLA is associated with phosphorus regulation in plants.

Key words

Eremochloa ophiuroides / phosphorus regulation / EoNLA / functional analysis

Cite this article

Download Citations
HE Qingqing , LIU Chuanqiang , LI Jianjian , et al . Cloning of EoNLA gene in Eremochloa ophiuroides and the transgenic Arabidopsis phenotypic characterization under various phosphorus levels[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(3): 134-142 https://doi.org/10.12302/j.issn.1000-2006.2021006013

References

[1]
郑玉红, 刘建秀. 假俭草(Eremochl ophiuroides(Munro.) Hack.)种质资源改良研究进展[J]. 植物学通报, 2004, 21(5):587-594.
ZHENG Y H, LIU J X. Study progress in germplasm resources of Eremochloa ophiuroides (Munro.) Hack[J]. Chin Bull Bot, 2004, 21(5):587-594.DOI: 10.3969/j.issn.1674-3466.2004.05.010.
[2]
HANNA W W. Centipedegrass: diversity and vulnerability[J]. Crop Sci, 1995, 35(2):332-334.DOI: 10.2135/cropsci1995.0011183X003500020007x.
[3]
宗俊勤, 牛佳伟, 刘建秀, 等. 假俭草花序发育的形态学观察及其与物候期和积温的对应关系[J]. 植物资源与环境学报, 2021, 30(5):50-57.
ZONG J Q, NIU J W, LIU J X, et al. Morphological observation on inflorescence development of Eremochloa ophiuroides and its corresponding relationships with phenophase and accumulated temperature[J]. J Plant Resour Environ, 2021, 30(5):50-57. DOI: 10.3969 /j.issn.1674-7895.2021.05.06.
[4]
宣继萍, 郭海林, 刘建秀, 等. 中国假俭草种质资源抗寒性初步鉴定[J]. 草业学报, 2003, 12(6):110-114.
XUAN J P, GUO H L, LIU J X, et al. Initial identification of cold tolerance in the Eremochloa ophiuroides germ plasm resource[J]. Acta Prataculturae Sin, 2003, 12(6):110-114.DOI: 10.3321/j.issn:1004-5759.2003.06.019.
[5]
SUN L L, TIAN J, ZHANG H Y, et al. Phytohormone regulation of root growth triggered by P deficiency or Al toxicity[J]. J Exp Bot, 2016, 67(12):3655-3664.DOI: 10.1093/jxb/erw188.
[6]
RAGHOTHAMA K G. Phosphate acquisition[J]. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50:665-693.DOI: 10.1146/annurev.arplant.50.1.665.
[7]
WU P, SHOU H X, XU G H, et al. Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis[J]. Curr Opin Plant Biol, 2013, 16(2):205-212.DOI: 10.1016/j.pbi.2013.03.002.
[8]
陈隆升, 陈永忠, 杨小胡, 等. 低磷胁迫对不同油茶无性系幼苗生长及养分利用效率的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(3):45-49.
CHEN L S, CHEN Y Z, YANG X H, et al. Effects of low phosphorus stress on the growth and nutrient utilization efficiency of different Camellia oleifera clones[J]. J Nanjing For Univ (Nat Sci Ed), 2014, 38(3):45-49.DOI: 10.3969/j.issn.1000-2006.2014.03.009.
[9]
GU M, CHEN A Q, SUN S B, et al. Complex regulation of plant phosphate transporters and the gap between molecular mechanisms and practical application:what is missing?[J]. Mol Plant, 2016, 9(3):396-416.DOI: 10.1016/j.molp.2015.12.012.
[10]
LÓPEZ-ARREDONDO D L, LEYVA-GONZÁLEZ M A, GONZÁLEZ-MORALES S I, et al. Phosphate nutrition:improving low-phosphate tolerance in crops[J]. Annu Rev Plant Biol, 2014, 65:95-123.DOI: 10.1146/annurev-arplant-050213-035949.
[11]
ZHENG N, SCHULMAN B A, SONG L Z, et al. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex[J]. Nature, 2002, 416(6882):703-709.DOI: 10.1038/416703a.
[12]
刘卫霞, 彭小忠, 袁建刚, 等. SCF(Skp1-Cul1-F-box蛋白)复合物及其在细胞周期中的作用[J]. 中国生物工程杂志, 2002, 22(3):1-3.
LIU W X, PENG X Z, YUAN J G, et al. SCF (Skp1-Cul1-F-box protein) complex and its function in cell cycle[J]. Prog Biotechnol, 2002, 22(3):1-3.DOI: 10.13523/j.cb.20020301.
[13]
HANNAM C, GIDDA S K, HUMBERT S, et al. Distinct domains within the nitrogen limitation adaptation protein mediate its subcellular localization and function in the nitrate-dependent phosphate homeostasis pathway[J]. Botany, 2018, 96(2):79-96.DOI: 10.1139/cjb-2017-0149.
[14]
AUESUKAREE C, HOMMA T, KANEKO Y, et al. Transcriptional regulation of phosphate-responsive genes in low-affinity phosphate-transporter-defective mutants in Saccharomyces cerevisiae[J]. Biochem Biophys Res Commun, 2003, 306(4):843-850.DOI: 10.1016/S0006-291X(03)01068-4.
[15]
GIOTS F, DONATON M C V, THEVELEIN J M. Inorganic phosphate is sensed by specific phosphate carriers and acts in concert with glucose as a nutrient signal for activation of the protein kinase: a pathway in the yeast Saccharomyces cerevisiae[J]. Mol Microbiol, 2003, 47(4):1163-1181.DOI: 10.1046/j.1365-2958.2003.03365.x.
[16]
HÜRLIMANN H C, STADLER-WAIBEL M, WERNER T P, et al. Pho91 is a vacuolar phosphate transporter that regulates phosphate and polyphosphate metabolism in Saccharomyces cerevisiae[J]. Mol Biol Cell, 2007, 18(11):4438-4445.DOI: 10.1091/mbc.e07-05-0457.
[17]
STONE S L, HAUKSDÓTTIR H, TROY A, et al. Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis[J]. Plant Physiol, 2005, 137(1):13-30.DOI: 10.1104/pp.104.052423.
[18]
SECCO D, WANG C, ARPAT B A, et al. The emerging importance of the SPX domain-containing proteins in phosphate homeostasis[J]. New Phytol, 2012, 193(4):842-851.DOI: 10.1111/j.1469-8137.2011.04002.x.
[19]
ZHOU Z P, WANG Z Y, LV Q D, et al. SPX proteins regulate Pi homeostasis and signaling in different subcellular level[J]. Plant Signal Behav, 2015, 10(9):e1061163.DOI: 10.1080/15592324.2015.1061163.
[20]
QI W J, BALDWIN S A, MUENCH S P, et al. Pi sensing and signalling:from prokaryotic to eukaryotic cells[J]. Biochem Soc Trans, 2016, 44(3):766-773.DOI: 10.1042/BST20160026.
[21]
KANT S, PENG M S, ROTHSTEIN S J. Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in Arabidopsis[J]. PLoS Genet, 2011, 7(3):e1002021.DOI: 10.1371/journal.pgen.1002021.
[22]
LIU W W, SUN Q, WANG K, et al. Nitrogen Limitation Adaptation (NLA) is involved in source-to-sink remobilization of nitrate by mediating the degradation of NRT1.7 in Arabidopsis[J]. New Phytol, 2017, 214(2):734-744.DOI: 10.1111/nph.14396.
[23]
YAN J, CHEN J B, ZHANG T T, et al. Evaluation of aluminum tolerance and nutrient uptake of 50 centipedegrass accessions and cultivars[J]. Hort Science, 2009, 44(3):857-861.DOI: 10.21273/hortsci.44.3.857.
[24]
SCHMITTGEN T D, LIVAK K J. Analyzing real-time PCR data by the comparative C(T) method[J]. Nat Protoc, 2008, 3(6):1101-1108.DOI: 10.1038/nprot.2008.73.
[25]
沈仁芳. 铝在土壤-植物中的行为及植物的适应机制[M]. 北京: 科学出版社, 2008.
[26]
VIGÂ A C, DEVÂ G. Phosphorus adsorption characteristics of some acid and alkaline soils[J]. J Indian Soc Soil Sci, 1984, 32(2):235-239.
[27]
LIN W Y, HUANG T K, CHIOU T J. Nitrogen limitation adaptation,a target of microRNA827,mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis[J]. Plant Cell, 2013, 25(10):4061-4074.DOI: 10.1105/tpc.113.116012.
[28]
PARK B S, SEO J S, CHUA N H. Nitrogen limitation adaptation recruits phosphate2 to target the phosphate transporter PT2 for degradation during the regulation of Arabidopsis phosphate homeostasis[J]. Plant Cell, 2014, 26(1):454-464.DOI: 10.1105/tpc.113.120311.
[29]
YANG S Y, LU W C, KO S S, et al. Upstream open reading frame and phosphate-regulated expression of rice OsNLA1 controls phosphate transport and reproduction[J]. Plant Physiol, 2020, 182(1):393-407.DOI: 10.1104/pp.19.01101.
PDF(10255 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/