JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (3): 143-150.doi: 10.12302/j.issn.1000-2006.202108023
Previous Articles Next Articles
Received:
2021-08-12
Accepted:
2021-10-22
Online:
2022-05-30
Published:
2022-06-10
CLC Number:
CHENG Qiang, ZHAO Lijuan. Draft genomes sequence of Elsinoë murrayae and comparative genomic analysis[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 143-150.
Table 1
Summary statistics of the E. murrayae NL1 genome assembly and annotation"
参数features | 值 value |
---|---|
测序总长/Gb total sequencing length | 6.3 |
总读序/Mb total reads | 42 |
覆盖度/倍 coverage | 241 |
基因组大小/bp genome size | 20 718 688 |
scaffold数量 No. of scaffolds | 98 |
GC含量/% GC content | 54.49 |
N50/bp | 598 889 |
最大scaffold/bp the largest scaffold | 1 241 890 |
完整度/% completeness | 99 |
基因总数量 total genes | 8 317 |
蛋白编码基因数量 protein-coding genes | 8 256 |
RNA编码基因数量 RNA genes | 66 |
GenBank登录号 GenBank accession No. | NKHZ00000000 |
Table 2
Synteny analysis of Elsinoë murrayae NL1 with fungi of the genus Elsinoë and Myriangium duriae"
真菌 fungi | 共线性 长度/Mb the aligned sequence size | 平均 一致性/% the average identity | 共线性 基因数量 the aligned gene No. |
---|---|---|---|
EauPSA NL1 | 19.86 | 74.5 | 6 561 |
EauSOS Ea-1 | 19.55 | 74.4 | 6 278 |
E. ampelina YL-1 | 19.50 | 73.21 | 6 239 |
E. fawcettii SM16-1 | 19.83 | 73.21 | 6 234 |
E. fawcettii DAR-70024 | 19.84 | 73.19 | 6 298 |
E. fawcettii53147a | 19.44 | 73.13 | 6 448 |
Myriangium duriaei | 17.01 | 70.14 | 3 854 |
Table 3
E. murrayae pathogenecity-related protein"
类型 type | 蛋白编码基因位点编号 protein coding gene ID | 备注 note |
---|---|---|
Emu特有候选效应因子 specific candidate effectors | CAC42_3192, CAC42_8023, CAC42_2167, CAC42_1169, CAC42_2412, CAC42_1591, CAC42_5276, CAC42_5678, CAC42_4451, CAC42_1857, CAC42_1930, CAC42_1933, CAC42_7685, CAC42_1560, CAC42_3502, CAC42_4601, CAC42_1000 | 在公共数据中无同源蛋白 |
Emu NL1与 Eau NL1(PSA) 共有特异性蛋白 the common specific proteins | CAC42_1526/B9Z65_5383,CAC42_1565/B9Z65_5438,CAC42_4946/B9Z65_8048,CAC42_5245/B9Z65_1324,CAC42_5855/B9Z65_7325,CAC42_6081/B9Z65_2782,CAC42_6597/B9Z65_8691,CAC42_7074/B9Z65_8229,CAC42_7195/B9Z65_4792,CAC42_7243/B9Z65_1695,CAC42_812/B9Z65_6144,CAC42_817/B9Z65_6139 | 只在E. murrayae 和E. australis中存在,而在Elsinoë属其他真菌中不存在的蛋白 |
Emu NL1编码的差异蛋白中的小分泌蛋白 the small secreted proteins | CAC42_1169, CAC42_3924, CAC42_6199, CAC42_1000, CAC42_1442, CAC42_1560, CAC42_1591, CAC42_167, CAC42_1716, CAC42_1857, CAC42_1930, CAC42_1933, CAC42_1940, CAC42_1950, CAC42_2080, CAC42_2167, CAC42_2188, CAC42_2412, CAC42_2777, CAC42_3191, CAC42_3192, CAC42_3469, CAC42_3502, CAC42_4233, CAC42_4451, CAC42_4601, CAC42_4934, CAC42_5276, CAC42_5346, CAC42_5678, CAC42_5688, CAC42_569, CAC42_5736, CAC42_5768, CAC42_6556, CAC42_6573, CAC42_673, CAC42_6843, CAC42_7315, CAC42_7685, CAC42_8023, CAC42_8203 | E. murrayae NL1与E. australis NL1比对,所发现的差异蛋白,其中42个为小分泌蛋白 |
Fig.4
The mating-type loci and detection of mating types of E. murrayaeSolid boxes represent the coding regions of the predicted genes interrupted by introns. Black arrows indicate the orientations of the coding sequences. Red arrows indicate MAT-specific primers。M.marker;2~7泳道为6个E. murrayae分离株lanes; 2-7. six E. murrayae isolates。"
[1] |
DICKMANN D I. Silviculture and biology of short-rotation woody crops in temperate regions: then and now[J]. Biomass Bioenergy, 2006, 30(8/9):696-705.DOI: 10.1016/j.biombioe.2005.02.008.
doi: 10.1016/j.biombioe.2005.02.008 |
[2] |
ZHAO P, KAKISHIMA M, WANG Q, et al. Resolving the Melampsora epitea complex[J]. Mycologia, 2017, 109(3):391-407.DOI: 10.1080/00275514.2017.1326791.
doi: 10.1080/00275514.2017.1326791 |
[3] |
WANG Y L, LU Q, JIA X Z, et al. First report of branch canker caused by Cytospora atrocirrhata on Populus sp.and Salix sp.in China[J]. Plant Dis, 2013, 97(3):426.DOI: 10.1094/PDIS-09-12-0854-PDN.
doi: 10.1094/PDIS-09-12-0854-PDN |
[4] |
AYLWARD J, STEENKAMP E T, DREYER L L, et al. A plant pathology perspective of fungal genome sequencing[J]. IMA Fungus, 2017, 8(1):1-15.DOI: 10.5598/imafungus.2017.08.01.01.
doi: 10.5598/imafungus.2017.08.01.01 |
[5] |
BUTIN H, KEHR R. Sphaceloma murrayae Jenk.& Grods.,a pathogen new to Europe on Salix spp.[J]. Forest Pathol, 2004, 34(1):27-31.DOI: 10.1046/j.1439-0329.2003.00344.x.
doi: 10.1046/j.1439-0329.2003.00344.x. |
[6] |
SPIERS A G, HOPCROFT D H. Some electron microscope observations of conidium ontogeny of Sphaceloma murrayae on Salix[J]. N Z J Bot, 1992, 30(3):353-358.DOI: 10.1080/0028825X.1992.10412912.
doi: 10.1080/0028825X.1992.10412912 |
[7] |
ZHAO L J, ZHANG W T, XIAO H J, et al. Molecular identification and characterization of Elsinoë murrayae (Synonym:Sphaceloma murrayae) from weeping willow[J]. J Phytopathol, 2018, 166(2):143-149.DOI: 10.1111/jph.12670.
doi: 10.1111/jph.12670 |
[8] |
ZHAO L J, XIAO H J, MA X J, et al. Elsinoë australis causing spot anthracnose on poplar in China[J]. Plant Dis, 2020, 104(8):2202-2209.DOI: 10.1094/pdis-11-19-2349-re.
doi: 10.1094/pdis-11-19-2349-re |
[9] |
LUO R B, LIU B H, XIE Y L, et al. SOAPdenovo2:an empirically improved memory-efficient short-read de novo assembler[J]. GigaScience, 2012, 1(1):18.DOI: 10.1186/2047-217X-1-18.
doi: 10.1186/2047-217X-1-18 |
[10] |
WATERHOUSE R M, SEPPEY M, SIMÃO F A, et al. BUSCO applications from quality assessments to gene prediction and phylogenomics[J]. Mol Biol Evol, 2018, 35(3):543-548.DOI: 10.1093/molbev/msx319.
doi: 10.1093/molbev/msx319 |
[11] |
TER-HOVHANNISYAN V, LOMSADZE A, CHERNOFF Y O, et al. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training[J]. Genome Res, 2008, 18(12):1979-1990.DOI: 10.1101/gr.081612.108.
doi: 10.1101/gr.081612.108 |
[12] |
LAGESEN K, HALLIN P, RØDLAND E A, et al. RNAmmer:consistent and rapid annotation of ribosomal RNA genes[J]. Nucleic Acids Res, 2007, 35(9):3100-3108.DOI: 10.1093/nar/gkm160.
doi: 10.1093/nar/gkm160 |
[13] |
LOWE T M, CHAN P P. tRNAscan-SE on-line:integrating search and context for analysis of transfer RNA genes[J]. Nucleic Acids Res, 2016, 44(1):54-57.DOI: 10.1093/nar/gkw413.
doi: 10.1093/nar/gkw413 |
[14] |
ZHANG H, YOHE T, HUANG L, et al. dbCAN2:a meta server for automated carbohydrate-active enzyme annotation[J]. Nucleic Acids Res, 2018, 46(1):95-101.DOI: 10.1093/nar/gky418.
doi: 10.1093/nar/gky418 |
[15] |
ALMAGRO ARMENTEROS J J, TSIRIGOS K D, SØNDERBY C K, et al. Signal P 5.0 improves signal peptide predictions using deep neural networks[J]. Nat Biotechnol, 2019, 37(4):420-423.DOI: 10.1038/s41587-019-0036-z.
doi: 10.1038/s41587-019-0036-z |
[16] |
KROGH A, LARSSON B, VON HEIJNE G, et al. Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes[J]. J Mol Biol, 2001, 305(3):567-580.DOI: 10.1006/jmbi.2000.4315.
doi: 10.1006/jmbi.2000.4315 |
[17] |
BLIN K, SHAW S, STEINKE K, et al. antiSMASH 5.0:updates to the secondary metabolite genome mining pipeline[J]. Nucleic Acids Res, 2019, 47(1):81-87.DOI: 10.1093/nar/gkz310.
doi: 10.1093/nar/gkz310 |
[18] |
KUMAR S, STECHER G, TAMURA K. MEGA7:molecular evolutionary genetics analysis version 7.0 for bigger datasets[J]. Mol Biol Evol, 2016, 33(7):1870-1874.DOI: 10.1093/molbev/msw054.
doi: 10.1093/molbev/msw054 |
[19] |
CASTILLO A I, NELSON A D L, HAUG-BALTZELL A K, et al. A tutorial of diverse genome analysis tools found in the CoGe web-platform using Plasmodium spp.as a model[J]. Database (Oxford), 2018,2018(10.1093):database.DOI: 10.1093/database/bay030.
doi: 10.1093/database/bay030 |
[20] |
LI L, STOECKERT C J, ROOS D S. OrthoMCL: identification of ortholog groups for eukaryotic genomes[J]. Genome Res, 2003, 13(9):2178-2189. DOI: 10.1101/gr.1224503.
doi: 10.1101/gr.1224503 |
[21] |
CHEN C J, CHEN H, ZHANG Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8):1194-1202.DOI: 10.1016/j.molp.2020.06.009.
doi: 10.1016/j.molp.2020.06.009 |
[22] |
STERGIOPOULOS I, DE WIT P J. Fungal effector proteins[J]. Annu Rev Phytopathol, 2009, 47:233-263.DOI: 10.1146/annurev.phyto.112408.132637.
doi: 10.1146/annurev.phyto.112408.132637 |
[23] |
EBERT M K, SPANNER R E, DE JONGE R, et al. Gene cluster conservation identifies melanin and perylenequinone biosynthesis pathways in multiple plant pathogenic fungi[J]. Environ Microbiol, 2019, 21(3):913-927.DOI: 10.1111/1462-2920.14475.
doi: 10.1111/1462-2920.14475 |
[24] |
LI Z, FAN Y C, CHANG P P, et al. Genome sequence resource for Elsinoë ampelina,the causal organism of grapevine anthracnose[J]. Mol Plant Microbe Interact, 2020, 33(4):576-579.DOI: 10.1094/MPMI-12-19-0337-A.
doi: 10.1094/MPMI-12-19-0337-A |
[25] |
JEFFRESS S, ARUN-CHINNAPPA K, STODART B, et al. Genome mining of the Citrus pathogen Elsinoë fawcettii;prediction and prioritisation of candidate effectors,cell wall degrading enzymes and secondary metabolite gene clusters[J]. PLoS One, 2020, 15(5):e0227396.DOI: 10.1371/journal.pone.0227396.
doi: 10.1371/journal.pone.0227396 |
[26] |
SHANMUGAM G, JEON J, HYUN J W. Draft genome sequences of Elsinoë fawcettii and Elsinoë australis causing scab diseases on Citrus[J]. Mol Plant Microbe Interactions, 2020, 33(2):135-137.DOI: 10.1094/mpmi-06-19-0169-a.
doi: 10.1094/mpmi-06-19-0169-a |
[27] |
FAN X L, BARRETO R W, GROENEWALD J Z, et al. Phylogeny and taxonomy of the scab and spot anthracnose fungus Elsinoë (Myriangiales,Dothideomycetes)[J]. Stud Mycol, 2017, 87:1-41.DOI: 10.1016/j.simyco.2017.02.001.
doi: 10.1016/j.simyco.2017.02.001 |
[28] |
NI M, FERETZAKI M, SUN S, et al. Sex in fungi[J]. Annu Rev Genet, 2011, 45:405-430.DOI: 10.1146/annurev-genet-110410-132536.
doi: 10.1146/annurev-genet-110410-132536 |
[29] |
WILKEN P M, STEENKAMP E T, WINGFIELD M J, et al. Which MAT gene? Pezizomycotina (Ascomycota) mating-type gene nomenclature reconsidered[J]. Fungal Biol Rev, 2017, 31(4):199-211.DOI: 10.1016/j.fbr.2017.05.003.
doi: 10.1016/j.fbr.2017.05.003 |
[30] |
CHUNG K R. Elsinoë fawcettii and Elsinoë australis:the fungal pathogens causing Citrus scab[J]. Mol Plant Pathol, 2011, 12(2):123-135.DOI: 10.1111/j.1364-3703.2010.00663.x.
doi: 10.1111/j.1364-3703.2010.00663.x. |
[1] | YIN Zengfang, OU Xiang, CHEN Yao, YANG Aixiang, SUN Liyong. Research progress and prospects of biological basis in Magnolia biondii [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 256-262. |
[2] | QIU Jing, LI Jiabao, ZHU Dahai, CHEN Xin. Taxonomic implications of genome sizes and micromorphological characteristics of leaf epidermis of species in Sorbus Sect. Alnifoliae [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 77-86. |
[3] | MA Qiuyue, WANG Yuxiao, LI Qianzhong, LI Shushun, WEN Jing, ZHU Lu, YAN Kunyuan, DU Yiming, XIE Zhijun, LI Shuxian, OUYANG Fangqun, LU Chengdai. Estimation of genome sizes of six Acer species by flow cytometry and K-mer analysis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 163-170. |
[4] | HE Xudong, SUI Dezong, WANG Hongling, HUANG Ruifang, ZHENG Jiwei, WANG Baosong. Research progresses of willow genetic breeding in China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 51-63. |
[5] | CHU Chenchen, SUN Mingsheng, WU Yuhan, YAN Zhenyu, LI Ting, FENG Yangfan, GUO Ying, YIN Tongming, XUE Liangjiao. Pan-genome and genomic variation analyses of Populus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 251-260. |
[6] | FANG Yanming, ZHU Fuyuan, LI Yao, LI Xuan. Advances and prospects of oak biology based on genomics [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 64-72. |
[7] | WANG Qingtong, DING Xiaolei, YE Jianren, SHI Xiufeng. Genetic differentiation of Bursaphelenchus xylophilus in east China based on single nucleotide polymorphisms (SNP) markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 21-28. |
[8] | HOU Jing, MAO Jinyan, ZHAI Hui, WANG Jie, YIN Tongming. Application of CRISPR/Cas technique in woody plant improvement [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 24-30. |
[9] | DUAN Yifan, LI Lan, YANG Xinxin, WANG Xianrong, ZHANG Min, ZHANG Cheng, CHAI Zihan. Study on ploidy and genome sizes of Osmanthus fragrans and its related species [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 47-52. |
[10] | ZHAO Runan, CHU Xiaojie, LIU Wei, HE Qianqian, ZHU Zunling. Structure and variation analyses of chloroplast genomes in Carpinus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 25-34. |
[11] | CHEN Wenwen, WU Huaitong, CHEN Yingnan. Gene duplications and functional divergence analyses of the SPL gene family [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 55-66. |
[12] | ZHU Youpeng, LIU Hongli, HAN Changzhi. Prediction of secretory protein in walnut bacterial black spot pathogen [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(03): 17-22. |
[13] | MA Qiuyue, LI Shushun, MA Xiang, WEN Jing, ZHU Lu, TANG Ling, LI Rui, GUO Wei, LI Qianzhong. Estimation of genome size of two Acer Linn. by flow cytometry [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(05): 201-205. |
[14] | LIU Hailin, YIN Tongming. Progress on the whole genome sequencing and the application in woody plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(05): 172-178. |
[15] | LIU Jingjing, MAO Xia, LI Xiaochun, FU Xiangxiang. A review on flowering mechanism in heterodichogamous plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(01): 147-154. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||