JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (6): 127-134.doi: 10.12302/j.issn.1000-2006.202209050
Special Issue: 南京林业大学120周年校庆特刊
Previous Articles Next Articles
PENG Fangren(), ZHU Kaikai, TAN Pengpeng
Received:
2022-09-24
Revised:
2022-10-11
Online:
2022-11-30
Published:
2022-11-24
CLC Number:
PENG Fangren, ZHU Kaikai, TAN Pengpeng. A review of non-wood forest research in China and the potential development of key technologies[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 127-134.
[1] | 徐湘江, 薛秋生, 李宏秋. 我国经济林产业发展现状与趋势[J]. 中国林副特产, 2013(3):102-105. |
XU X J, XUE Q S, LI H Q. Development status and trend of economic forest industry in China[J]. For Prod Speciality China, 2013(3):102-105.DOI:10.13268/j.cnki.fbsic.2013.03.013. | |
[2] | 周力军. 我国经济林产业发展形势及国家扶持政策(下)[J]. 国土绿化, 2018(2):22-24. |
ZHOU L J. Development situation of China’s economic forest industry and national supporting policies (Ⅱ)[J]. Land Green, 2018(2):22-24. | |
[3] | 陈建华, 吕芳德, 谷战英, 等. 我国现代经济林产业体系建设的成就[J]. 经济林研究, 2010, 28(3):56-61. |
CHEN J H, LÜ F D, GU Z Y, et al. Achievements in construction of modern nonwood forest industry system in China[J]. Nonwood For Res, 2010, 28(3):56-61.DOI:10.14067/j.cnki.1003-8981.2010.03.030. | |
[4] | 邹大林, 靳爱仙, 何友均. 我国主要经济林产品供求分析[J]. 北京林业大学学报(社会科学版), 2005, 4(2):61-65. |
ZOU D L, JIN A X, HE Y J. Analysis on the supply and demand of China’s main economic forest products[J]. J Beijing For Univ (Soc Sci),2005, 4(2):61-65.DOI:10.3969/j.issn.1671-6116.2005.02.013. | |
[5] | 雷小林, 邓小梅. 21世纪经济林果业工程的展望[J]. 江西林业科技, 2000, 28(2):28-29. |
LEI X L, DENG X M. Prospect of economic forest and fruit industry project in 21st Century[J]. Jiangxi For Sci Technol, 2000, 28(2):28-29.DOI:10.16259/j.cnki.36-1342/s.2000.02.015. | |
[6] | 庄瑞林. 我国经济林良种选育“七五”期间取得的成就[J]. 经济林研究, 1992, 10(S1):62-65. |
ZHUANG R L. Achievements of China’s economic forest breeding during the seventh five-year plan[J]. Econ For Res, 1992, 10(S1):62-65. | |
[7] | 姚小华. 经济林产业现代化的思考[J]. 林业科技开发, 2004, 18(4):3-6. |
YAO X H. Thoughts on modernization of economic forest industry[J]. China For Sci Technol, 2004, 18(4):3-6. | |
[8] | 高凤山, 陈学贵, 赵春磊. 浅谈经济林树种在我省生态建设中的地位和作用[J]. 山东林业科技, 2005, 35(3):74-75. |
GAO F S, CHEN X G, ZHAO C L. Discussion on the position and function of economic forest tree species in ecological construction of our Province[J]. J Shandong For Sci Technol, 2005, 35(3):74-75.DOI:10.3969/j.issn.1002-2724.2005.03.043. | |
[9] | 李少宁, 陶雪莹, 鲁绍伟, 等. 北京市经济林生态系统服务功能评估[J]. 西北林学院学报, 2022, 37(1):267-272. |
LI S N, TAO X Y, LU S W, et al. Evaluation of the service function of Beijing non-timber forest ecosystem[J]. J Northwest For Univ, 2022, 37(1):267-272. | |
[10] | 韦维, 刘晓蔚, 朱金鸟, 等. 油茶种质资源库信息系统设计与实现[J]. 广西林业科学, 2017, 46(4):428-430. |
WEI W, LIU X W, ZHU J N, et al. Design and achievement of Camellia germplasm resource library information system[J]. Guangxi For Sci, 2017, 46(4):428-430.DOI:10.3969/j.issn.1006-1126.2017.04.020. | |
[11] | 黄瑞春, 谭晓风, 王承南, 等. 油桐种质资源库品比试验初步研究[J]. 中南林业科技大学学报, 2011, 31(9):38-41. |
HUANG R C, TAN X F, WANG C N, et al. Preliminary study on comparison genetic resources center in Vernicia fordii[J]. J Central South Univ For & Technol, 2011, 31(9):38-41.DOI:10.14067/j.cnki.1673-923x.2011.09.028. | |
[12] | 韦维, 梁星星, 何应会, 等. 基于物联网的广西国家林木种质资源库信息平台构建[J]. 广西林业科学, 2021, 50(2):230-235. |
WEI W, LIANG X X, HE Y H, et al. Construction of information platform of Guangxi forest germplasm resource bank based on Internet of Things[J]. Guangxi For Sci, 2021, 50(2):230-235.DOI:10.19692/j.cnki.gfs.2021.02.019. | |
[13] | 陈永忠, 邓绍宏, 陈隆升, 等. 油茶产业发展新论[J]. 南京林业大学学报(自然科学版), 2020, 44(1):1-10. |
CHEN Y Z, DENG S H, CHEN L S, et al. A new view on the development of oil tea camellia industry[J]. J Nanjing For Univ (Nat Sci Ed),2020, 44(1):1-10.DOI:10.3969/j.issn.1000-2006.201909033. | |
[14] | 曹福亮, 黄敏仁, 桂仁意, 等. 银杏主要栽培品种遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2005, 29(6):1-6. |
CAO F L, HUANG M R, GUI R Y, et al. The fingerprinting and genetic diversity of main Ginkgo cultivars[J]. J Nanjing For Univ (Nat Sci Ed), 2005, 29(6):1-6.DOI:10.3969/j.issn.1000-2006.2005.06.001. | |
[15] | 谭晓风, 胡芳名, 谢禄山, 等. 油茶种子EST文库构建及主要表达基因的分析[J]. 林业科学, 2006, 42(1):43-48. |
TAN X F, HU F M, XIE L S, et al. Construction of EST library and analysis of main expressed genes of Camellia oleifera seeds[J]. Sci Silvae Sin, 2006, 42(1):43-48. | |
[16] | 黄威剑, 李梦. 果树全基因组测序现状与展望[J]. 园艺学报, 2021, 48(4): 733-748. DOI:10.16420/j.issn.0513-353x.2020-0069. |
HUANG W J, LI M. Status and prospect of whole genome sequencing in fruit trees[J]. Journal of Horticulture, 2021, 48(4): 733-748. DOI:10.16420/j.issn.0513-353x.2020-0069. | |
[17] | 冉洪, 张莹, 胡陶, 等. 经济树种全基因组测序成果要报[J]. 经济林研究, 2015, 33(2): 149-157. DOI:10.14067/j.cnki.1003-8981.2015.02.026. |
RAN H, ZHANG Y, HU T, et al. The whole genome sequencing results of economic tree species should be reported[J]. Economic Forest Research, 2015, 33(2): 149-157. DOI:10.14067/j.cnki.1003-8981.2015.02.026. | |
[18] | 施季森, 王占军, 陈金慧. 木本植物全基因组测序研究进展[J]. 遗传, 2012, 34(2): 145-156. DOI:10.3724/SP.J.1005.2012.00145. |
SHI J S, WANG Z J, CHEN J H. Research progress in sequencing the whole genome of woody plants[J]. Genetics, 2012, 34(2): 145-156. DOI: 10.3724/SP.J.1005.2012.00145. | |
[19] | 刘海琳. 银杏全基因组测序及生物信息学分析[D]. 南京: 南京林业大学, 2018. |
LIU H L. Genome sequencing and bioinformatics analysis of Ginkgo biloba[D]. Nanjing: Nanjing Forestry University, 2018 | |
[20] | LIU H L, WANG X B, WANG G B, et al. The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution[J]. Nat Plants, 2021, 7(6):748-756.DOI:10.1038/s41477-021-00933-x. |
[21] | LIN P, WANG K L, WANG Y P, et al. The genome of oil-Camellia and population genomics analysis provide insights into seed oil domestication[J]. Genome Biol, 2022, 23(1):14.DOI:10.1186/s13059-021-02599-2. |
[22] | 袁德义, 范晓明, 谭晓风, 等. 油茶带芽茎段及叶片离体培养再生体系的建立[J]. 南京林业大学学报(自然科学版), 2013, 37(5):35-39. |
YUAN D Y, FAN X M, TAN X F, et al. Culture in vitro and rapid propagation techniques of buds and leafs in Camellia oleifera[J]. J Nanjing For Univ (Nat Sci Ed), 2013, 37(5):35-39. | |
[23] | 邢瑞丹, 李亚东, 刘庆忠, 等. 香玲核桃离体叶片再生体系的建立[J]. 果树学报, 2010, 27(1):146-149,159. |
XING R D, LI Y D, LIU Q Z, et al. Adventitious shoot regeneration from in vitro leaf of Juglans regia cv.Xiangling[J]. J Fruit Sci, 2010, 27(1):146-149,159.DOI:10.13925/j.cnki.gsxb.2010.01.034. | |
[24] | 梁文杰, 谭晓风, 乌云塔娜. 梨自交不亲和基因克隆及其进化分析[J]. 果树学报, 2021, 38(10): 1621-1637. DOI:10.13925/j.cnki.gsxb.20210195. |
LIANG W J, TAN X F, WUYUN T N. Cloning and evolutionary analysis of pear self incompatibility gene[J]. Journal of Fruit Trees, 2021, 38(10): 1621-1637. DOI:10.13925/j.cnki.gsxb.20210195. | |
[25] | 江南, 谭晓风. 基于基因芯片的梨品种S基因型鉴定的技术方法[J]. 中南林业科技大学学报, 2007, 27(1):104-108. |
JIANG N, TAN X F. Identification technology for pear cultivar S-genotype based on genechips[J]. J Central South Univ For & Technol, 2007, 27(1):104-108.DOI:10.3969/j.issn.1673-923X.2007.01.020. | |
[26] | 陈慧, 张树军, 张妤艳, 等. 40个梨品种S基因型的鉴定及S基因频率分析[J]. 南京农业大学学报, 2013, 36(5):21-26. |
CHEN H, ZHANG S J, ZHANG Y Y, et al. Identification of S-genotypes in forty pear cultivars and analysis of S-RNase genes frequency in Pyrus[J]. J Nanjing Agric Univ, 2013, 36(5):21-26.DOI:10.7685/j.issn.1000-2030.2013.05.004. | |
[27] | 何敏, 谷超, 吴巨友, 等. 果树自交不亲和机制研究进展[J]. 园艺学报, 2021, 48(4):759-777. |
HE M, GU C, WU J Y, et al. Recent advances on self-incompatibility mechanism in fruit trees[J]. Acta Hortic Sin, 2021, 48(4):759-777.DOI:10.16420/j.issn.0513-353x.2020-0425. | |
[28] | 江南, 谭晓风, 徐艳, 等. 油茶自交不亲和S-RNase基因鉴定与分子特征分析[J]. 植物遗传资源学报, 2022, 23(5): 1521-1535. DOI:10.13430/j.cnki.jpgr.20220412004. |
JIANG N, TAN X F, XU Y, et al. Identification and molecular characterization of S-RNase gene of self incompatibility in Camellia oleifera[J]. Journal of Plant Genetic Resources, 2022, 23(5): 1521-1535. DOI:10.13430/j.cnki.jpgr.20220412004. | |
[29] | 高超. 油茶后期自交不亲和性的细胞学研究[D]. 长沙: 中南林业科技大学, 2017. |
GAO C. The cytological study on lateacting self-incompatibility in Camellia oleifera[D]. Changsha: Central South University of Forestry and Technology, 2017. | |
[30] | 王瑞, 陈永忠, 陈隆升, 等. 油茶优良无性系芽苗砧嫁接技术体系的研究[J]. 中南林业科技大学学报, 2013, 33(7):77-80. |
WANG R, CHEN Y Z, CHEN L S, et al. Study on hypocotyle grafting techniques of superior clones of Camellia oleifera[J]. J Central South Univ For & Technol, 2013, 33(7):77-80.DOI:10.14067/j.cnki.1673-923x.2013.07.017. | |
[31] | 范成民, 董丽芬, 朱帜, 等. 核桃芽苗砧嫁接方法研究[J]. 西北林学院学报, 2008, 23(4):109-111. |
FAN C M, DONG L F, ZHU Z, et al. Nurse seed grafting methods of Juglans regia[J]. J Northwest For Univ, 2008, 23(4):109-111. | |
[32] | 谭晓风, 胡芳名. 二十一世纪经济林生产和科研的发展趋势[J]. 中南林学院学报, 2002, 22(1):82-85. |
TAN X F, HU F M. Trend of non-timber forestry production and research in the 21st Century[J]. J Central South For Univ, 2002, 22(1):82-85.DOI:10.14067/j.cnki.1673-923x.2002.01.019. | |
[33] | WANG J, JIANG L B, WU R L. Plant grafting:How genetic exchange promotes vascular reconnection[J]. New Phytol, 2017, 214(1):56-65.DOI:10.1111/nph.14383. |
[34] | MO Z H, FENG G, SU W C, et al. Transcriptomic analysis provides insights into grafting union development in pecan (Carya illinoinensis)[J]. Genes, 2018, 9(2):71.DOI:10.3390/genes9020071. |
[35] | MA Q G, BU D C, ZHANG J P, et al. The transcriptome landscape of walnut interspecies hybrid (Juglans hindsii × Juglans regia) and regulation of cambial activity in relation to grafting[J]. Front Genet, 2019, 10:577.DOI:10.3389/fgene.2019.00577. |
[36] | HAYAT F, IQBAL S, COULIBALY D, et al. An insight into dwarfing mechanism:contribution of scion-rootstock interactions toward fruit crop improvement[J]. Fruit Res, 2021, 1(1):1-11.DOI:10.48130/frures-2021-0003. |
[37] | 胡新喜, 邓子牛, 冯鹄竣, 等. 柑橘矮化育种及矮化机理研究进展[J]. 湖南农业科学, 2008(6):121-123. |
HU X X, DENG Z N, FENG G J, et al. Research progress of citrus dwarfing breeding and dwarfing mechanism[J]. Hunan Agric Sci, 2008(6):121-123.DOI:10.16498/j.cnki.hnnykx.2008.06.031. | |
[38] | 黄有军, 周丽, 陈芳芳, 等. 山核桃成花过程基因表达的cDNA-AFLP分析[J]. 浙江林学院学报, 2009, 26(3):297-301. |
HUANG Y J, ZHOU L, CHEN F F, et al. Gene expression with cDNA-AFLP (amplified fragment length polymorphism) during flowering of Carya cathayensis[J]. J Zhejiang For Coll, 2009, 26(3):297-301.DOI:10.3969/j.issn.2095-0756.2009.03.001. | |
[39] | ASLAM M M, DENG L, WANG X B, et al. Expression patterns of genes involved in sugar metabolism and accumulation during peach fruit development and ripening[J]. Sci Hortic, 2019, 257:108633.DOI:10.1016/j.scienta.2019.108633. |
[40] | HUANG R M, HUANG Y J, SUN Z C, et al. Transcriptome analysis of genes involved in lipid biosynthesis in the developing embryo of pecan (Carya illinoinensis)[J]. J Agric Food Chem, 2017, 65(20):4223-4236.DOI:10.1021/acs.jafc.7b00922. |
[41] | LI C F, XU Y X, MA J Q, et al. Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in ‘Anji Baicha’ (Camellia sinensis)[J]. BMC Plant Biol, 2016, 16(1):195.DOI:10.1186/s12870-016-0885-2. |
[42] | CHEN L K, LU D, WANG T, et al. Identification and expression analysis of starch branching enzymes involved in starch synthesis during the development of chestnut (Castanea mollissima Blume) cotyledons[J]. PLoS One, 2017, 12(5):e0177792.DOI:10.1371/journal.pone.0177792. |
[43] | HUANG J, ZHANG C M, ZHAO X, et al. The jujube genome provides insights into genome evolution and the domestication of sweetness/acidity taste in fruit trees[J]. PLoS Genet, 2016, 12(12):e1006433.DOI:10.1371/journal.pgen.1006433. |
[44] | 宋丽华, 秦芳, 白祥, 等. 气温升高与干旱胁迫对灵武长枣坐果与果实品质的影响[J]. 西北林学院学报, 2015, 30(2):129-133. |
SONG L H, QIN F, BAI X, et al. Effect of elevated temperature and drought stress on fruit setting rate and fruit quality of Lingwu long jujuba[J]. J Northwest For Univ, 2015, 30(2):129-133.DOI: 10.3969/j.issn.1001-7461.2015.02.22 | |
[45] | YIN K Q, GAO C X, QIU J L. Progress and prospects in plant genome editing[J]. Nat Plants, 2017, 3:17107.DOI:10.1038/nplants.2017.107. |
[46] | 陈赢男, 韦素云, 曲冠正, 等. 现代林木育种关键核心技术研究现状与展望[J]. 南京林业大学学报(自然科学版), 2022. |
CHEN Y N, WEI S Y, QU G Z, et al. The key and core technologies for accelerating the tree breeding process[J]. J Nanjing For Univ (Nat Sci Ed), 2022. DOI: 10.3969/j.issn.1000-2006.202206020. | |
[47] | GAO C X. Genome engineering for crop improvement and future agriculture[J]. Cell, 2021, 184(6):1621-1635.DOI:10.1016/j.cell.2021.01.005. |
[48] | XIONG J S, DING J, LI Y. Genome-editing technologies and their potential application in horticultural crop breeding[J]. Hortic Res, 2015, 2:15019.DOI:10.1038/hortres.2015.19. |
[49] | CHARRIER A, VERGNE E, DOUSSET N, et al. Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system[J]. Frontiers Plant Sci, 2019, 10:40. DOI: 10.3389/fpls.2019.00040. |
[50] | JIA H, XU J, ORBOVIC V, et al. Editing citrus genome via SaCas9/sgRNA system[J]. Frontiers Plant Sci, 2017, 8:2135. DOI: 10.3389/fpls.2017.0213 |
[51] | FISTER A S, LANDHERR L, MAXIMOVA S N, et al. Transient expression of CRISPR/Cas 9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao[J]. Frontiers Plant Sci, 2018, 9:268. DOI: 10.3389/fpls.2018.00268 |
[52] | BREITLER J C, DECHAMP E, CAMPA C, et al. CRISPR/Cas9-mediated efficient targeted mutagenesis has the potential to accelerate the domestication of Coffea canephora[J]. Plant Cell, Tiss Organ Cult, 2018, 134:383-94. DOI: 10.1007/s11240-018-1429-2 |
[53] | CHANG Y, SONG X, ZHANG Q, et al. Robust CRISPR/Cas9 mediated gene editing of JrWOX11 manipulated adventitious rooting and vegetative growth in a nut tree species of walnut[J]. Sci Hortic, 2022, 303: 111199. DOI: 10.1016/j.scienta.2022.111199. |
[54] | VARKONYI-GASIC E, WANG T, VOOGD C, et al. Mutagenesis of kiwifruit CENTRORADIALIS-like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering[J]. Plant Biotechnol J, 2019, 17:869-880 |
[55] | ZHANG W F, CAO G X, LI X L, et al. Closing yield gaps in China by empowering smallholder farmers[J]. Nature, 2016, 537(7622):671-674. DOI: 10.1038/nature19368 |
[56] | 吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3):298-310. |
WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chin J Plant Ecol, 2014, 38(3):298-310.DOI:10.3724/SP.J.1258.2014.00027. | |
[57] | 申建波, 白洋, 韦中, 等. 根际生命共同体:协调资源、环境和粮食安全的学术思路与交叉创新[J]. 土壤学报, 2021, 58(4):805-813. |
SHEN J B, BAI Y, WEI Z, et al. Rhizobiont:an interdisciplinary innovation and perspective for harmonizing resources,environment,and food security[J]. Acta Pedol Sin, 2021, 58(4):805-813.DOI:10.11766/trxb202012310722. | |
[58] | STASSEN M J, HSU S H, PIETERSE C M, et al. Coumarin communication along the microbiome-root-shoot axis[J]. Trends Plant Sci, 2021, 26(2):169-183. DOI: 10.1016/j.tplants.2020.09.008 |
[59] | 张扬南. 智慧林业:现代林业发展的新方向[J]. 南京林业大学学报(人文社会科学版), 2013, 13(4):77-81,119. |
ZHANG Y N. Smart forestry: a new direction for modern forestry development[J]. J Nanjing For Univ (Humanit Soc Sci Ed),2013, 13(4):77-81,119.DOI:10.16397/j.cnki.1671-1165.2013.04.007. | |
[60] | 高万林, 李桢, 于丽娜, 等. 加快农业信息化建设促进农业现代化发展[J]. 农业现代化研究, 2010, 31(3):257-261. |
GAO W L, LI Z, YU L N, et al. Speed up development of agricultural informatization and improve construction of agricultural modernization[J]. Res Agric Mod, 2010, 31(3):257-261.DOI:10.3969/j.issn.1000-0275.2010.03.001. | |
[61] | MONTANARO G, CRISTOS X, VITALE N, et al. Orchard management, soil organic carbon and ecosystem services in Mediterranean fruit tree crops[J]. Sci Hortic, 2017, 217: 92-101. DOI: 10.1016/j.scienta.2017.01.012 |
[62] | 周晓光. 国外经济林产业技术发展经验及启示[J]. 经济林研究, 2020, 38(4):246-252. |
ZHOU X G. Foreign experience and enlightenment of economic forest industry and technology development[J]. Non-wood Forest Research, 2020, 38(4):246-252. DOI:10.14067/j.cnki.1003-8981.2020.04.030. | |
[63] | WANG Z, NIU Y, VASHISTH T, et al. Nontargeted metabolomics-based multiple machine learning modeling boosts early accurate detection for citrus Huanglongbing[J]. Hortic Res, 2022, 9. DOI: 10.1093/hr/uhac145 |
[64] | LOVELL J T, BENTLEY N B, BHATTARAI G, et al. Four chromosome scale genomes and a pan-genome annotation to accelerate pecan tree breeding[J]. Nature Commun, 2021, 12:4125. DOI: 10.1038/s41467-021-24328-w |
[65] | BAILEY-SERRES J, PARKER J E, AINSWORTH E A, et al. Genetic strategies for improving crop yields[J]. Nature, 2019, 575(7781):109-118.DOI:10.1038/s41586-019-1679-0. |
[66] | 李麒, 闫思宇, 陈肃. 白桦BpERF98基因的遗传转化及非生物胁迫应答反应[J]. 植物研究, 2022, 42(1):93-103. |
LI Q, YAN S Y, CHEN S. Genetic transformation of BpERF98 gene and abiotic stress response of transgenic plant in Betula platyphylla[J]. Bull Bot Res, 2022, 42(1):93-103. | |
[67] | YANG G Y, PENG S B, WANG T Y, et al. Walnut ethylene response factor JrERF2-2 interact with JrWRKY7 to regulate the GSTs in plant drought tolerance[J]. Ecotoxicol Environ Saf, 2021, 228:112945.DOI:10.1016/j.ecoenv.2021.112945. |
[68] | ZHAO M Y, ZHANG N, GAO T, et al. Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants[J]. New Phytol, 2020, 226(2):362-372.DOI:10.1111/nph.16364. |
[69] | ZHANG H, ZHU J, GONG Z, et al. Abiotic stress responses in plants[J]. Nat Rev Genet, 2022, 23(2):104-119. DOI: 10.1038/s41576-021-00413-0 |
[70] | ZHU X G, LONG S P, ORT D R. Improving photosynthetic efficiency for greater yield[J]. Annu Rev Plant Biol, 2010, 61:235-261.DOI:10.1146/annurev-arplant-042809-112206. |
[71] | 孟力力, 宋江峰, 柏宗春, 等. 远红光对生菜光合作用及叶绿素荧光特性的影响[J]. 江苏农业学报, 2022, 38(1):181-189. |
MENG L L, SONG J F, BAI Z C, et al. Effects of far-red light on photosynthesis and chlorophyll fluorescence characteristics of lettuce[J]. Jiangsu J Agric Sci, 2022, 38(1):181-189.DOI:10.3969/j.issn.1000-4440.2022.01.022. | |
[72] | MURCHIE E H, NIYOGI K K. Manipulation of photoprotection to improve plant photosynthesis[J]. Plant Physiol, 2010, 155(1):86-92.DOI:10.1104/pp.110.168831. |
[73] | BETTI M, BAUWE H, BUSCH F A, et al. Manipulating photorespiration to increase plant productivity:recent advances and perspectives for crop improvement[J]. J Exp Bot, 2016, 67(10):2977-2988.DOI:10.1093/jxb/erw076. |
[74] | SIMKIN A J, MCAUSLAND L, LAWSON T, et al. Overexpression of the RieskeFeS protein increases Electron transport rates and biomass yield[J]. Plant Physiol, 2017, 175(1):134-145.DOI:10.1104/pp.17.00622. |
[75] | VON CAEMMERER S, QUICK W P, FURBANK R T. The development of C4 rice:current progress and future challenges[J]. Science, 2012, 336(6089):1671-1672.DOI:10.1126/science.1220177. |
[76] | SHAMEER S, BAGHALIAN K, CHEUNG C Y M, et al. Computational analysis of the productivity potential of CAM[J]. Nat Plants, 2018, 4(3):165-171.DOI:10.1038/s41477-018-0112-2. |
[77] | 孙萌萌, 王莹慧, 汪育文, 等. 南粳5055及其亲本的光合特性[J]. 江苏农业学报, 2020(1):1-9. |
SUN M M, WANG Y H, WANG Y W, et al. Photosynthetic characteristics of japonica rice cultivar Nanjing 5055 and its parents[J]. Jiangsu J Agric Sci, 2020(1):1-9.DOI:10.3969/j.issn.1000-4440.2020.01.001. | |
[78] | DE SOUZA A P, BURGESS S J, DORAN L, et al. Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection[J]. Science, 2022, 377(6608):851-854. DOI: 10.1126/science.adc9831. |
[79] | 武小芬, 陈亮, 齐慧, 等. 辐照协同甲酸分离油茶壳中纤维素、木质素和木糖的工艺研究[J]. 核农学报, 2020, 34(9):1975-1982. |
WU X F, CHEN L, QI H, et al. Separation process of cellulose,lignin and xylose from Camellia oleifera shell by irradiation and formic acid[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(9):1975-1982. DOI: 10.11869/j.issn.100-8551.2020.09.1975. |
[1] | YANG Rui, WU Chaoming, ZHU Li, HU Haibo. Study on soil erosion characteristics of economic forest slope field in southern Jiangsu hilly area [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 70-76. |
[2] | CHEN Jingjing, LI Song, DING Sheng, WU Mengdi, ZHAO Qingjian. Analysis on industrial agglomeration of China’s non-wood forest based on spatial perspectives [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 159-166. |
[3] | WU Jiong, JIANG Fugen, PENG Shaofeng, MA Kaisen, CHEN Song, SUN Hua. Estimating the tree height and yield of Camellia oleifera by combining crown volume [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 53-62. |
[4] | KANG Xiangyang. Research progress of forest genetics and tree breeding [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(3): 1-10. |
[5] | GU Lei1, WU Wei-guang1, SHEN Yue-qin1, JIANG Chun-qian2. The Effects of Ecological Public Welfare Forest Construction on Sustainable Forest Management [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2007, 31(01): 10-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||