JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (6): 64-72.doi: 10.12302/j.issn.1000-2006.202208025
Special Issue: 南京林业大学120周年校庆特刊
Previous Articles Next Articles
FANG Yanming(), ZHU Fuyuan, LI Yao, LI Xuan
Received:
2022-08-22
Revised:
2022-09-14
Online:
2022-11-30
Published:
2022-11-24
CLC Number:
FANG Yanming, ZHU Fuyuan, LI Yao, LI Xuan. Advances and prospects of oak biology based on genomics[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 64-72.
Table 1
List of complete chloroplast genome sequences of oaks had been sequenced"
亚属 subgen. | 组 Sect. | 树种(首次报道的GenBank序列号) tree species(first reported GenBank accession No.) |
---|---|---|
栎亚属 Quercus | 弗吉尼亚栎组 Virentes | 弗吉尼亚栎Q. virginiana (MT916773) |
白栎组 Quercus | 槲栎Q. aliena (KP301144);锐齿槲栎Q. aliena var. acutiserrata (KU240008);槲树Q. dentata (MG967555);黄山栎Q. dentata subsp. stewardii (MG678022);白栎Q. fabri (MG678031);凤城栎Q. fenchengensis (MN095295);深裂叶栎Q. gambelii (MK105457);大叶栎Q. griffithii (MG678034);大果栎Q. macrocarpa (MK105459);蒙古栎Q. mongolica (MG678033);皱叶栎Q. mongolica subsp. crispula (MK860969);无梗花栎 Q. petraea (LT996899);夏栎Q. robur (LT996900);枹栎Q. serrata (MG678024);短柄枹栎Q. serrata var. brevipetiolata (MG678032);星毛栎Q. stellata (MK105467);辽东栎Q. wutaishanica (MG678027)和云南波罗栎Q. yunnanensis (MG678028) | |
红栎组 Lobatae | 海滨常绿栎Q. agrifolia (OK634019);猩红栎Q. coccinea (MN308055);加州黑栎Q. kelloggii (OM541584);沼生栎Q. palustris (MK105461);柳叶栎Q. phellos (MZ196210);红槲栎Q. rubra (JX970937)和山地常绿栎Q. wislizeni (OM541583) | |
麻栎亚属 Cerris | 青冈组 Cyclobalanopsis | 赤栎Q. acuta (MT742291);细叶青冈Q. ciliaris (MN199024);福建青冈Q. chungii (MW401633);黄毛青冈Q. delavayi (MW450870);华南青冈Q. edithiae (KU382355);饭甑青冈Q. fleuryi (MG678008);赤皮青冈Q. gilva (MG678009);青冈Q. glauca (KX852399);大叶青冈Q. jenseniana (MG678011);木姜叶青冈Q. litseoides (ON598394);多脉青冈Q. multinervis (MG678004);小叶青冈Q. myrsinifolia (MG678005);竹叶青冈Q. neglecta (MG678010);宁冈青冈Q. ningangensis (MG678013);倒卵叶青冈Q. obovatifolia (MG356785);薄叶青冈Q. saravanensis (MW411183);滇青冈Q. schottkyana (=Q.glaucoides, MW450872);云山青冈Q. sessilifolia (MG678012);西畴青冈Q. sichourensis (MF787253)和褐叶青冈Q. stewardiana (MN199023) |
冬青栎组 Ilex | 岩栎Q. acrodonta (MG678019);川滇高山栎Q. aquifolioides (KP340971);橿子栎Q. baronii (KT963087);坝王栎Q. bawanglingensis (MK449426);铁橡栎Q. cocciferoides (MG678016);匙叶栎Q. dolicholepis (KU240010);巴东栎Q. engleriana (MG678029);锥连栎Q. franchetii (MG678018);川西栎Q. gilliana (MG678007);帽斗栎Q. guyavifolia (MG678020);矮高山栎Q. monimotricha (MG678006);尖叶栎Q. oxyphylla (MG678021);黄背栎Q. pannosa (MG678025);乌冈栎Q. phillyraeoides (MG678026);毛脉高山栎Q. rehderiana (MG678037);光叶高山栎Q. pseudosemecarpifolia (MG678014);高山栎Q. semecarpifolia (MG678017);灰背栎Q. senescens (MG678023);刺叶高山栎Q. spinosa (KM841421);太鲁阁栎Q. tarokoensis (MF135621);通麦栎Q. tungmaiensis (MF593893)和炭栎Q. utilis (MG678015) | |
麻栎组 Cerris | 麻栎Q. acutissima (MF593895);小叶栎Q. chenii (MF593894)和栓皮栎Q. variabilis (KU240009) |
Table 2
Case studies of syngameon and adaptive introgression in oaks"
组 Sect. | 树种 species | 遗传标记 genetic markers | 文献 reference |
---|---|---|---|
麻栎组Cerris | 麻栎Q. acutissima、栓皮栎Q. variabilis | nSNPs | [ |
白栎组 Quercus | 夏栎Q. robur、无梗花栎Q. petraea | nSNPs、cpSNPs、mtSNPs | [ |
夏栎Q. robur、无梗花栎Q. petraea | nSNPs | [ | |
槲树Q. dentata、皱叶栎Q. mongolica subsp. crispula | nSNPs | [ | |
红栎组 Lobatae | 北方针栎Q. ellipsoidalis、红槲栎Q. rubra | EST-SSRs | [ |
猩红栎Q. coccinea、北方针栎Q. ellipsoidalis、红槲栎Q. rubra和黑栎Q. velutina | SSRs、EST-SSRs | [ | |
中间栎组Protobalanus | 金杯栎Q. chrysolepis、岛屿栎Q. tomentella | nSNPs | [ |
麻栎组和冬青栎组 Cerris and Ilex | 冬青栎Q. ilex、欧洲栓皮栎Q. suber | nSSRs | [ |
麻栎组和白栎组 Cerris and Quercus | 麻栎Q. acutissima、白栎Q. fabri、枹栎Q. serrata和栓皮栎Q. variabilis | nSSRs | [ |
Table 3
Several case studies in Landscape Genomics of oaks"
树种 species | 个体数 number of individuals | 测序方法 sequencing method | SNP数 number of SNPs | 参考基因组 reference genome | 主要发现 main findings | 文献 reference |
---|---|---|---|---|---|---|
川滇高山栎 Q. aquifolioides | 587 | Pool-seq | 381 | 夏栎 Q. robur | RONA分析表明有一个谱系适应能力更强;在长寿广布栎树中检测到自然选择和分子适应相关的遗传印记;物种在异质生境中发生了不同的种内适应过程 | [ |
加州白栎 Q. lobata | 436 | GBS | 11 019 | 加州白栎 Q. lobata | 许多位点可能是多空间尺度或多地理环境局域适应的基础,新候选基因与气候适应关联 | [ |
网叶栎 Q. rugosa | 103 | GBS | 5 354 | 加州白栎 Q. lobata | 遗传变异的空间模式与降水季节性和地理距离密切相关,预测了种群未来面临风险的区域 | [ |
麻栎 Q. acutissima | 167 | RAD-seq | 55 361 | 加州白栎 Q. lobata | 环境对非中性SNP的影响大于中性SNP,环境与表型分化显著相关;同质园试验与景观基因组学数据相结合可验证栎树局域适应假设 | [ |
欧洲栓皮栎 Q. suber | 95 | GBS | 1 996 | 加州白栎 Q. lobata | RONA分析途径可以应用于物种响应气候变化与适应研究 | [ |
槲树 Q. dentata | 38 | WGS | 16 654 671 | 夏栎 Q. robur | 发现一个500 kb基因组区域,含12个环境相关单核苷酸多态性位点;单核苷酸多态性密度比基因组背景高160倍;群体遗传分析揭示了该基因组区域的各种选择迹象 | [ |
[1] | LEROY T, LOUVET J M, LALANNE C, et al. Adaptive introgression as a driver of local adaptation to climate in European white oaks[J]. New Phytol, 2020, 226(4):1171-1182.DOI:10.1111/nph.16095. |
[2] | PLOMION C, AURY J M, AMSELEM J, et al. Decoding the oak genome:public release of sequence data,assembly,annotation and publication strategies[J]. Mol Ecol Resour, 2016, 16(1):254-265.DOI:10.1111/1755-0998.12425. |
[3] | PLOMION C, AURY J M, AMSELEM J, et al. Oak genome reveals facets of long lifespan[J]. Nat Plants, 2018, 4(7):440-452.DOI:10.1038/s41477-018-0172-3. |
[4] | SORK V L, FITZ-GIBBON S T, PUIU D, et al. First draft assembly and annotation of the genome of a California endemic oak Quercus lobata Née (Fagaceae)[J]. G3 ( Bethesda), 2016, 6(11):3485-3495.DOI:10.1534/g3.116.030411. |
[5] | SORK V L, COKUS S J, FITZ-GIBBON S T, et al. High-quality genome and methylomes illustrate features underlying evolutionary success of oaks[J]. Nat Commun, 2022, 13(1):2047.DOI:10.1038/s41467-022-29584-y. |
[6] | FU R R, ZHU Y X, LIU Y, et al. Genome-wide analyses of introgression between two sympatric Asian oak species[J]. Nat Ecol Evol, 2022, 6(7):924-935.DOI:10.1038/s41559-022-01754-7. |
[7] | 郑万钧. 中国树木志(第2卷)[M]. 北京: 中国林业出版社,1985. |
[8] | DENK T, GRIMM G W, MANOS P S, et al. An updated infrageneric classification of the oaks:review of previous taxonomic schemes and synthesis of evolutionary patterns[M]// Tree Physiology. Cham: Springer International Publishing, 2017:13-38.DOI:10.1007/978-3-319-69099-5_2. |
[9] | KREMER A, CASASOLI M, BARRENECHE T, et al. Fagaceae trees[M]//Forest Trees.Berlin, Heidelberg:Springer, 2007:161-187.DOI:10.1007/978-3-540-34541-1_5. |
[10] | WEI G M, LI X, FANG Y M. Sympatric genome size variation and hybridization of four oak species as determined by flow cytometry genome size variation and hybridization[J]. Ecol Evol, 2021, 11(4):1729-1740.DOI:10.1002/ece3.7163. |
[11] | BODÉNÈS C, CHANCEREL E, EHRENMANN F, et al. High-density linkage mapping and distribution of segregation distortion regions in the oak genome[J]. DNA Res, 2016, 23(2):115-124.DOI:10.1093/dnares/dsw001. |
[12] | RAMOS A M, USIÉ A, BARBOSA P, et al. The draft genome sequence of cork oak[J]. Sci Data, 2018, 5:180069.DOI:10.1038/sdata.2018.69. |
[13] | AI W F, LIU Y Q, MEI M, et al. A chromosome-scale genome assembly of the Mongolian oak (Quercus mongolica)[J]. Mol Ecol Resour, 2022, 22(6):2396-2410.DOI:10.1111/1755-0998.13616. |
[14] | HIPP A L, MANOS P S, GONZÁLEZ-RODRÍGUEZ A, et al. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity[J]. New Phytol, 2018, 217(1):439-452.DOI:10.1111/nph.14773. |
[15] | DENG M, JIANG X L, HIPP A L, et al. Phylogeny and biogeography of east Asian evergreen oaks (Quercus Section Cyclobalanopsis;Fagaceae):insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia[J]. Mol Phylogenetics Evol, 2018, 119:170-181.DOI:10.1016/j.ympev.2017.11.003. |
[16] | HIPP A L, MANOS P S, HAHN M, et al. Genomic landscape of the global oak phylogeny[J]. New Phytol, 2020, 226(4):1198-1212.DOI:10.1111/nph.16162. |
[17] | MANOS P S, HIPP A L. An updated infrageneric classification of the north American oaks (Quercus subgenus Quercus):review of the contribution of phylogenomic data to biogeography and species diversity[J]. Forests, 2021, 12(6):786.DOI:10.3390/f12060786. |
[18] | YANG Y C, ZHOU T, QIAN Z Q, et al. Phylogenetic relationships in Chinese oaks (Fagaceae,Quercus):evidence from plastid genome using low-coverage whole genome sequencing[J]. Genomics, 2021, 113(3):1438-1447.DOI:10.1016/j.ygeno.2021.03.013. |
[19] | PANG X B, LIU H S, WU S R, et al. Species identification of oaks (Quercus L.,Fagaceae) from gene to genome[J]. Int J Mol Sci, 2019, 20(23):5940.DOI:10.3390/ijms20235940. |
[20] | LI Y, WANG L, ZHANG X W, et al. Extensive sharing of chloroplast haplotypes among east Asian Cerris oaks:the imprints of shared ancestral polymorphism and introgression[J]. Ecol Evol, 2022, 12(8):e9142.DOI:10.1002/ece3.9142. |
[21] | CANNON C H, PETIT R J. The oak syngameon:more than the sum of its parts[J]. New Phytol, 2020, 226(4):978-983.DOI:10.1111/nph.16091. |
[22] | DEGEN B, YANBAEV Y, MADER M, et al. Impact of gene flow and introgression on the range wide genetic structure of Quercus robur (L.) in Europe[J]. Forests, 2021, 12(10): 1425. DOI:10.3390/f12101425. |
[23] | LEROY T, PLOMION C, KREMER A. Oak symbolism in the light of genomics[J]. New Phytol, 2020, 226(4):1012-1017. DOI: 10.1111/nph.15987. |
[24] | NAGAMITSU T, UCHIYAMA K, IZUNO A, et al. Environment-dependent introgression from Quercus dentata to a coastal ecotype of Quercus mongolica var.crispula in northern Japan[J]. New Phytol, 2020, 226(4):1018-1028.DOI:10.1111/nph.16131. |
[25] | KHODWEKAR S, GAILING O. Evidence for environment-dependent introgression of adaptive genes between two red oak species with different drought adaptations[J]. Am J Bot, 2017, 104(7):1088-1098.DOI:10.3732/ajb.1700060. |
[26] | LIND-RIEHL J, GAILING O. Adaptive variation and introgression of a CONSTANS-like gene in north American red oaks[J]. Forests, 2016, 8(1):3.DOI:10.3390/f8010003. |
[27] | ORTEGO J, GUGGER P F, SORK V L. Genomic data reveal cryptic lineage diversification and introgression in Californian golden cup oaks (section Protobalanus)[J]. New Phytol, 2018, 218(2):804-818.DOI:10.1111/nph.14951. |
[28] | LÓPEZ D E HEREDIA U, SÁNCHEZ H, SOTO A. Molecular evidence of bidirectional introgression between Quercus suber and Quercus ilex[J]. IForest, 2018, 11(2):338-343.DOI:10.3832/ifor2570-011. |
[29] | LI X, WEI G M, EL-KASSABY Y A, et al. Hybridization and introgression in sympatric and allopatric populations of four oak species[J]. BMC Plant Biol, 2021, 21(1):266.DOI:10.1186/s12870-021-03007-4. |
[30] | LI Y, ZHANG X W, WANG L, et al. Influence of Pliocene and Pleistocene climates on hybridization patterns between two closely related oak species in China[J]. Ann Bot, 2022, 129(2):231-245.DOI:10.1093/aob/mcab140. |
[31] | BUCK R, FLORES-RENTERÍA L. The syngameon Enigma[J]. Plants (Basel), 2022, 11(7):895.DOI:10.3390/plants11070895. |
[32] | BOECKLEN W J. Topology of syngameons[J]. Ecol Evol, 2017, 7(24):10486-10491.DOI:10.1002/ece3.3507. |
[33] | SUAREZ-GONZALEZ A, LEXER C, CRONK Q C B. Adaptive introgression:a plant perspective[J]. Biol Lett, 2018, 14(3):20170688.DOI:10.1098/rsbl.2017.0688. |
[34] | BURGARELLA C, BARNAUD A, KANE N A, et al. Adaptive introgression:an untapped evolutionary mechanism for crop adaptation[J]. Front Plant Sci, 2019, 10:4.DOI:10.3389/fpls.2019.00004. |
[35] | BUFFALO V, COOP G. Estimating the genome-wide contribution of selection to temporal allele frequency change[J]. Proc Natl Acad Sci USA, 2020, 117(34):20672-20680.DOI:10.1073/pnas.1919039117. |
[36] | SALEH D, CHEN J, LEPLÉ J C, et al. Genome-wide evolutionary response of European oaks during the Anthropocene[J]. Evol Lett, 2022, 6(1):4-20.DOI:10.1002/evl3.269. |
[37] | LIANG Y Y, SHI Y, YUAN S, et al. Linked selection shapes the landscape of genomic variation in three oak species[J]. New Phytol, 2021, 233(1):555-568.DOI:10.1111/nph.17793. |
[38] | BALKENHOL N, DUDANIEC R Y, KRUTOVSKY K V, et al. Landscape genomics:understanding relationships between environmental heterogeneity and genomic characteristics of populations[M]// Population Genomics. Cham: Springer International Publishing, 2017:261-322.DOI:10.1007/13836_2017_2. |
[39] | STORFER A, PATTON A, FRAIK A K. Navigating the interface between landscape genetics and landscape genomics[J]. Front Genet, 2018, 9:68.DOI:10.3389/fgene.2018.00068. |
[40] | FENG L, DU F K. Landscape genomics in tree conservation under a changing environment[J]. Front Plant Sci, 2022, 13:822217.DOI:10.3389/fpls.2022.822217. |
[41] | DU F K, WANG T R, WANG Y Y, et al. Contrasted patterns of local adaptation to climate change across the range of an evergreen oak,Quercus aquifolioides[J]. Evol Appl, 2020, 13(9):2377-2391.DOI:10.1111/eva.13030. |
[42] | GUGGER P F, FITZ-GIBBON S T, ALBARRÁN-LARA A, et al. Landscape genomics of Quercus lobata reveals genes involved in local climate adaptation at multiple spatial scales[J]. Mol Ecol, 2021, 30(2):406-423.DOI:10.1111/mec.15731. |
[43] | VANHOVE M, PINA-MARTINS F, COELHO A C, et al. Using gradient forest to predict climate response and adaptation in Cork oak[J]. J Evol Biol, 2021, 34: 910-923. DOI: 10.1111/jeb.13765. |
[44] | SORK V L, AITKEN S N, DYER R J, et al. Putting the landscape into the genomics of trees:approaches for understanding local adaptation and population responses to changing climate[J]. Tree Genet Genomes, 2013, 9(4):901-911.DOI:10.1007/s11295-013-0596-x. |
[45] | BROWNE L, WRIGHT J W, FITZ-GIBBON S, et al. Adaptational lag to temperature in valley oak (Quercus lobata) can be mitigated by genome-informed assisted gene flow[J]. Proc Natl Acad Sci USA, 2019, 116(50):25179-25185.DOI:10.1073/pnas.1908771116. |
[46] | MARTINS K, GUGGER P F, LLANDERAL-MENDOZA J, et al. Landscape genomics provides evidence of climate-associated genetic variation in Mexican populations of Quercus rugosa[J]. Evol Appl, 2018, 11(10):1842-1858.DOI:10.1111/eva.12684. |
[47] | GAO J, LIU Z L, ZHAO W, et al. Combined genotype and phenotype analyses reveal patterns of genomic adaptation to local environments in the subtropical oak Quercus acutissima[J]. J Syst Evol, 2021, 59(3):541-556.DOI:10.1111/jse.12568. |
[48] | PINA-MARTINS F, BAPTISTA J, PAPPAS G J, et al. New insights into adaptation and population structure of cork oak using genotyping by sequencing[J]. Glob Change Biol, 2018, 25(1):337-350.DOI:10.1111/gcb.14497. |
[49] | ZHOU B F, SHI Y, CHEN X Y, et al. Linked selection,ancient polymorphism,and ecological adaptation shape the genomic landscape of divergence in Quercus dentata[J]. J Sytematics Evolution, 2022, 19.DOI:10.1111/jse.12817. |
[50] | TEDERSOO L, BRUNDRETT M C. Evolution of ectomycorrhizal symbiosis in plants[M]// Biogeography of Mycorrhizal Symbiosis. Cham: Springer International Publishing, 2017:407-467.DOI:10.1007/978-3-319-56363-3_19. |
[51] | BOUFFAUD M L, HERRMANN S, TARKKA M T, et al. Oak displays common local but specific distant gene regulation responses to different mycorrhizal fungi[J]. BMC Genomics, 2020, 21(1):399.DOI:10.1186/s12864-020-06806-5. |
[52] | ABDELFATTAH A, WISNIEWSKI M, SCHENA L, et al. Experimental evidence of microbial inheritance in plants and transmission routes from seed to phyllosphere and root[J]. Environ Microbiol, 2021, 23(4):2199-2214.DOI:10.1111/1462-2920.15392. |
[53] | FORT T, PAUVERT C, ZANNE A E, et al. Maternal effects shape the seed mycobiome in Quercus petraea[J]. New Phytol, 2021, 230(4):1594-1608.DOI:10.1111/nph.17153. |
[54] | U’REN J M, ZIMMERMAN N B. Oaks provide new perspective on seed microbiome assembly[J]. New Phytol, 2021, 230(4):1293-1295.DOI:10.1111/nph.17305. |
[55] | PASCUAL-ALVARADO E, CASTILLEJOS-LEMUS D E, CUEVAS-REYES P, et al. Diversity of galls induced by wasps (Hymenoptera:Cynipidae,Cynipini) associated with oaks (Fagaceae:Quercus) in Mexico[J]. Bot Sci, 2017, 95(3):461.DOI:10.17129/botsci.1215. |
[56] | SCHULTZ J C, STONE G N. A tale of two tissues:probing gene expression in a complex insect-induced gall[J]. Mol Ecol, 2022, 31(11):3031-3034.DOI:10.1111/mec.16482. |
[57] | HEARN J, BLAXTER M, SCHÖNROGGE K, et al. Genomic dissection of an extended phenotype:oak galling by a cynipid gall wasp[J]. PLoS Genet, 2019, 15(11):e1008398.DOI:10.1371/journal.pgen.1008398. |
[58] | MARTINSON E O, WERREN J H, EGAN S P. Tissue-specific gene expression shows a cynipid wasp repurposes oak host gene networks to create a complex and novel parasite-specific organ[J]. Mol Ecol, 2022, 31(11):3228-3240.DOI:10.1111/mec.16159. |
[59] | LEBOLDUS J M, NAVARRO S M, KLINE N, et al. Repeated emergence of sudden oak death in Oregon:chronology,impact,and management[J]. Plant Dis, 2022:2022Apr29.DOI:10.1094/PDIS-02-22-0294-FE. |
[60] | GALLARDO A, MORCUENDE D, SOLLA A, et al. Regulation by biotic stress of tannins biosynthesis in Quercus ilex: crosstalk between defoliation and Phytophthora cinnamomi infection[J]. Physiol Plant, 2019, 165(2):319-329.DOI:10.1111/ppl.12848. |
[61] | BARTHOLOMÉ J, BRACHI B, MARÇAIS B, et al. The genetics of exapted resistance to two exotic pathogens in pedunculate oak[J]. New Phytol, 2020, 226(4):1088-1103.DOI:10.1111/nph.16319. |
[62] | COELHO A C, PIRES R, SCHÜTZ G, et al. Disclosing proteins in the leaves of cork oak plants associated with the immune response to Phytophthora cinnamomi inoculation in the roots:a long-term proteomics approach[J]. PLoS One, 2021, 16(1):e0245148.DOI:10.1371/journal.pone.0245148. |
[63] | CRISTINA A C, SCHÜTZ G. Protein markers for the identification of cork oak plants infected with Phytophthora cinnamomi by applying an (α,β)-k-feature set approach[J]. Forests, 2022, 13(6):940.DOI:10.3390/f13060940. |
[64] | CUNHA E, SILVA M, CHAVES I, et al. iEC7871 Quercus suber model:the first multi-tissue diel cycle genome-scale metabolic model of a woody tree[J]. bioRxiv, 2021, DOI:10.1101/2021.03.09.434537. |
[65] | LEAL A R, SAPETA H, BEECKMAN T, et al. Spatiotemporal development of suberized barriers in cork oak taproots[J]. Tree Physiol, 2021, 42(6):1269-1285.DOI:10.1093/treephys/tpab176. |
[66] | LOPES S T, SOBRAL D, COSTA B, et al. Phellem versus xylem:genome-wide transcriptomic analysis reveals novel regulators of cork formation in cork oak[J]. Tree Physiol, 2019, 40(2):129-141.DOI:10.1093/treephys/tpz118. |
[67] | FERNÁNDEZ-PIÑÁN S, BOHER P, SOLER M, et al. Transcriptomic analysis of cork during seasonal growth highlights regulatory and developmental processes from phellogen to phellem formation[J]. Sci Rep, 2021, 11:12053.DOI:10.1038/s41598-021-90938-5. |
[68] | LIN L M, GUO H Y, SONG X, et al. Adaptive evolution of Chalcone isomerase superfamily in Fagaceae[J]. Biochem Genet, 2021, 59(2):491-505.DOI:10.1007/s10528-020-10012-z. |
[69] | MOSELER A, SELLES B, ROUHIER N, et al. Novel insights into the diversity of the sulfurtransferase family in photosynthetic organisms with emphasis on oak[J]. New Phytol, 2020, 226(4):967-977.DOI:10.1111/nph.15870. |
[70] | ZHANG J, LIN L M, CHENG W W, et al. Genome-wide identification and expression analysis of glycosyltransferase gene family 1 in Quercus robur L[J]. J Appl Genetics, 2021, 62(4):559-570.DOI:10.1007/s13353-021-00650-3. |
[71] | GUGGER P F, FITZ-GIBBON S, PELLEGRINI M, et al. Species-wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients[J]. Mol Ecol, 2016, 25(8):1665-1680.DOI:10.1111/mec.13563. |
[72] | BROWNE L, MEAD A, HORN C, et al. Experimental DNA demethylation associates with changes in growth and gene expression of oak tree seedlings[J]. G3 Genes|Genomes|Genetics, 2020, 10(3):1019-1028.DOI:10.1534/g3.119.400770. |
[73] | SILVA H G, SOBRAL R S, MAGALHÃES A P, et al. Genome-wide identification of epigenetic regulators in Quercus suber L[J]. Int J Mol Sci, 2020, 21(11):3783.DOI:10.3390/ijms21113783. |
[74] | INÁCIO V, BARROS P M, COSTA A, et al. Differential DNA methylation patterns are related to phellogen origin and quality of Quercus suber cork[J]. PLoS One, 2017, 12(1):e0169018.DOI:10.1371/journal.pone.0169018. |
[75] | BROWNE L, MACDONALD B, FITZ-GIBBON S, et al. Genome-wide variation in DNA methylation predicts variation in leaf traits in an ecosystem-foundational oak species[J]. Forests, 2021, 12(5):569.DOI:10.3390/f12050569. |
[76] | ROSSI F, CRNJAR A, COMITANI F, et al. Extraction and high-throughput sequencing of oak heartwood DNA:assessing the feasibility of genome-wide DNA methylation profiling[J]. PLoS One, 2021, 16(11):e0254971.DOI:10.1371/journal.pone.0254971. |
[77] | MUNNÉ-BOSCH S. Limits to tree growth and longevity[J]. Trends Plant Sci, 2018, 23(11):985-993.DOI:10.1016/j.tplants.2018.08.001. |
[78] | TOBIAS P A, GUEST D I. Tree immunity:growing old without antibodies[J]. Trends Plant Sci, 2014, 19(6):367-370.DOI:10.1016/j.tplants.2014.01.011. |
[79] | SCHMID-SIEGERT E, SARKAR N, ISELI C, et al. Low number of fixed somatic mutations in a long-lived oak tree[J]. Nat Plants, 2017, 3(12):926-929.DOI:10.1038/s41477-017-0066-9. |
[80] | CHEN M X, ZHANG Y J, FERNIE A R, et al. SWATH-MS-based proteomics:strategies and applications in plants[J]. Trends Biotechnol, 2021, 39(5):433-437.DOI:10.1016/j.tibtech.2020.09.002. |
[81] | MARTÍNEZ M T, SAN-JOSÉ M, ARRILLAGA I, et al. Holm oak somatic embryogenesis:current status and future perspectives[J]. Front Plant Sci, 2019, 10:239.DOI:10.3389/fpls.2019.00239. |
[82] | SERRA O, MÄHÖNEN A P, HETHERINGTON A J, et al. The making of plant armor:the periderm[J]. Annu Rev Plant Biol, 2022, 73:405-432.DOI:10.1146/annurev-arplant-102720-031405. |
[83] | CAVENDER-BARES J. Diversification,adaptation,and community assembly of the American oaks (Quercus),a model clade for integrating ecology and evolution[J]. New Phytol, 2019, 221(2):669-692.DOI:10.1111/nph.15450. |
[84] | XING Y, LIU Y, ZHANG Q, et al. Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima)[J]. Gigascience, 2019, 8(9):giz112.DOI:10.1093/gigascience/giz112. |
[85] | SUN Y, GUO J L, ZENG X R, et al. Chromosome-scale genome assembly of Castanopsis tibetana provides a powerful comparative framework to study the evolution and adaptation of Fagaceae trees[J]. Mol Ecol Resour, 2022, 22(3):1178-1189.DOI:10.1111/1755-0998.13539. |
[86] | VINHA A F, BARREIRA J C M, COSTA A S G, et al. A new age for Quercus spp.fruits:review on nutritional and phytochemical composition and related biological activities of acorns[J]. Compr Rev Food Sci Food Saf, 2016, 15(6):947-981.DOI:10.1111/1541-4337.12220. |
[87] | SCHROEDER H, NOSENKO T, GHIRARDO A, et al. Oaks as beacons of hope for threatened mixed forests in central Europe[J]. Front For Glob Change, 2021, 4:670797. DOI: 10.3389/ffgc.2021.670797. |
[88] | KREMER A, HIPP A L. Oaks: an evolutionary success story[J]. New Phytol, 2020, 226(4): 987-1011. DOI: 10.1111/nph.16274. |
[1] | DENG Yanwen, TIAN Shuyi, LIU Shihan, LIANG Jian, TAO Jialu, DENG Xiaomei. Analysis of chloroplast genome structures and the phylogeny of Michelia guangdongensis and M. sirindhorniae [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 69-77. |
[2] | ZHAI Xuechang, PENG Li, YAN Haifei, ZHU Kefan, ZHANG Shuyan, ZHANG Caiyun, LU Xiankai. Comparative chloroplast genomics of the important resource plant Kadsura coccinea [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 71-78. |
[3] | MA Jianhui, CHEN Xin, GENG Liyang, TANG Chenqian, WEI Xueyan. Phylogenetic analysis of Sorbus ser. Folgnerianae (Rosaceae) [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 25-36. |
[4] | LIU Li, QU Yinquan, YU Yanhao, WANG Qian, FU Xiangxiang. Analysis of SSR locus based on the whole genome sequences of Cyclocarya paliurus and the development of polymorphic primers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 67-75. |
[5] | YIN Zengfang, OU Xiang, CHEN Yao, YANG Aixiang, SUN Liyong. Research progress and prospects of biological basis in Magnolia biondii [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 256-262. |
[6] | QIU Jing, LI Jiabao, ZHU Dahai, CHEN Xin. Taxonomic implications of genome sizes and micromorphological characteristics of leaf epidermis of species in Sorbus Sect. Alnifoliae [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 77-86. |
[7] | MA Qiuyue, WANG Yuxiao, LI Qianzhong, LI Shushun, WEN Jing, ZHU Lu, YAN Kunyuan, DU Yiming, XIE Zhijun, LI Shuxian, OUYANG Fangqun, LU Chengdai. Estimation of genome sizes of six Acer species by flow cytometry and K-mer analysis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 163-170. |
[8] | CHU Chenchen, SUN Mingsheng, WU Yuhan, YAN Zhenyu, LI Ting, FENG Yangfan, GUO Ying, YIN Tongming, XUE Liangjiao. Pan-genome and genomic variation analyses of Populus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 251-260. |
[9] | HE Xudong, SUI Dezong, WANG Hongling, HUANG Ruifang, ZHENG Jiwei, WANG Baosong. Research progresses of willow genetic breeding in China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 51-63. |
[10] | WANG Qingtong, DING Xiaolei, YE Jianren, SHI Xiufeng. Genetic differentiation of Bursaphelenchus xylophilus in east China based on single nucleotide polymorphisms (SNP) markers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 21-28. |
[11] | CHENG Qiang, ZHAO Lijuan. Draft genomes sequence of Elsinoë murrayae and comparative genomic analysis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 143-150. |
[12] | HOU Jing, MAO Jinyan, ZHAI Hui, WANG Jie, YIN Tongming. Application of CRISPR/Cas technique in woody plant improvement [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 24-30. |
[13] | DUAN Yifan, LI Lan, YANG Xinxin, WANG Xianrong, ZHANG Min, ZHANG Cheng, CHAI Zihan. Study on ploidy and genome sizes of Osmanthus fragrans and its related species [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 47-52. |
[14] | ZHAO Runan, CHU Xiaojie, LIU Wei, HE Qianqian, ZHU Zunling. Structure and variation analyses of chloroplast genomes in Carpinus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 25-34. |
[15] | CHEN Wenwen, WU Huaitong, CHEN Yingnan. Gene duplications and functional divergence analyses of the SPL gene family [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 55-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||