JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (6): 73-82.doi: 10.12302/j.issn.1000-2006.202205016
Special Issue: 南京林业大学120周年校庆特刊
Previous Articles Next Articles
HAO Zhaodong(), SHI Jisen, CHEN Jinhui()
Received:
2022-05-12
Revised:
2022-08-17
Online:
2022-11-30
Published:
2022-11-24
Contact:
CHEN Jinhui
E-mail:haozd@njfu.edu.cn;chenjh@njfu.edu.cn
CLC Number:
HAO Zhaodong, SHI Jisen, CHEN Jinhui. Research progresses on regulatory mechanisms of carotenoid-mediated plant flower coloration[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 73-82.
[1] | 赵昶灵, 郭维明, 陈俊愉. 植物花色形成及其调控机理[J]. 植物学通报, 2005, 40(1):70-81. |
ZHAO C L, GUO W M, CHEN J Y. Formation of plant color and its regulation mechanism[J]. Chin Bull Bot, 2005, 40(1):70-81. | |
[2] | HOPKINS R, RAUSHER M D. Pollinator-mediated selection on flower color allele drives reinforcement[J]. Science, 2012, 335(6072):1090-1092.DOI:10.1126/science.1215198. |
[3] | TANAKA Y, SASAKI N, OHMIYA A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids[J]. The Plant Journal, 2008, 54(4): 733-749. DOI: 10.1111/j.1365-313X.2008.03447.x. |
[4] | GROTEWOLD E. The genetics and biochemistry of floral pigments[J]. Annu Rev Plant Biol, 2006, 57:761-780.DOI:10.1146/annurev.arplant.57.032905.105248. |
[5] | XU W J, DUBOS C, LEPINIEC L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes[J]. Trends Plant Sci, 2015, 20(3):176-185.DOI:10.1016/j.tplants.2014.12.001. |
[6] | TIMONEDA A, FENG T, SHEEHAN H, et al. The evolution of betalain biosynthesis in Caryophyllales[J]. New Phytol, 2019, 224(1):71-85.DOI:10.1111/nph.15980. |
[7] | HATLESTAD G J, AKHAVAN N A, SUNNADENIYA R M, et al. The beet Y locus encodes an anthocyanin MYB-like protein that activates the betalain red pigment pathway[J]. Nat Genet, 2015, 47(1):92-96.DOI:10.1038/ng.3163. |
[8] | SUN T H, YUAN H, CAO H B, et al. Carotenoid metabolism in plants:the role of plastids[J]. Mol Plant, 2018, 11(1):58-74.DOI:10.1016/j.molp.2017.09.010. |
[9] | STANLEY L, YUAN Y W. Transcriptional regulation of carotenoid biosynthesis in plants:so many regulators,so little consensus[J]. Front Plant Sci, 2019, 10:1017.DOI:10.3389/fpls.2019.01017. |
[10] | PAINE J A, SHIPTON C A, CHAGGAR S, et al. Improving the nutritional value of Golden Rice through increased pro-vitamin A content[J]. Nat Biotechnol, 2005, 23(4):482-487.DOI:10.1038/nbt1082. |
[11] | ZHU C F, NAQVI S, BREITENBACH J, et al. Combinatorial genetic transformation generates a library of metabolic phenotypes for the carotenoid pathway in maize[J]. Proc Natl Acad Sci USA, 2008, 105(47):18232-18237.DOI:10.1073/pnas.0809737105. |
[12] | ZHOU X J, WELSCH R, YANG Y, et al. Arabidopsis OR proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis[J]. PNAS, 2015, 112(11):3558-3563.DOI:10.1073/pnas.1420831112. |
[13] | TOLEDO-ORTIZ G, JOHANSSON H, LEE K P, et al. The HY5-PIF regulatory module coordinates light and temperature control of photosynthetic gene transcription[J]. PLoS Genet, 2014, 10(6):e1004416.DOI:10.1371/journal.pgen.1004416. |
[14] | FUJISAWA M, SHIMA Y, NAKAGAWA H, et al. Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins[J]. Plant Cell, 2014, 26(1):89-101.DOI:10.1105/tpc.113.119453. |
[15] | LU S W, YE J L, ZHU K J, et al. A fruit ripening-associated transcription factor CsMADS5 positively regulates carotenoid biosynthesis in citrus[J]. J Exp Bot, 2021, 72(8):3028-3043.DOI:10.1093/jxb/erab045. |
[16] | ARIAS D, ORTEGA A, GONZÁLEZ-CALQUIN C, et al. Development and carotenoid synthesis in dark-grown carrot taproots require PHYTOCHROME RAPIDLY REGULATED1[J]. Plant Physiol, 2022, 189(3):1450-1465.DOI:10.1093/plphys/kiac097. |
[17] | BREITENBACH J, SANDMANN G. ζ-Carotene cis isomers as products and substrates in the plant poly-cis-carotenoid biosynthetic pathway to lycopene[J]. Planta, 2005, 220(5):785-793.DOI:10.1007/s00425-004-1395-2. |
[18] | ISAACSON T, OHAD I, BEYER P, et al. Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants[J]. Plant Physiol, 2004, 136(4):4246-4255.DOI:10.1104/pp.104.052092. |
[19] | CHEN Y, LI F Q, WURTZEL E T. Isolation and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants[J]. Plant Physiol, 2010, 153(1):66-79.DOI:10.1104/pp.110.153916. |
[20] | BARTLEY G E, VIITANEN P V, PECKER I, et al. Molecular cloning and expression in photosynthetic bacteria of a soybean cDNA coding for phytoene desaturase,an enzyme of the carotenoid biosynthesis pathway[J]. Proc Natl Acad Sci USA, 1991, 88(15):6532-6536.DOI:10.1073/pnas.88.15.6532. |
[21] | FALSAFI S R, ROSTAMABADI H, BABAZADEH A, et al. Lycopene nanodelivery systems;recent advances[J]. Trends Food Sci Technol, 2022, 119:378-399.DOI:10.1016/j.tifs.2021.12.016. |
[22] | CUNNINGHAM F X J, POGSON B, SUN Z, et al. Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation[J]. Plant Cell, 1996, 8(9):1613-1626.DOI:10.1105/tpc.8.9.1613. |
[23] | CUNNINGHAM F X J, GANTT E. One ring or two?Determination of ring number in carotenoids by lycopene epsilon-cyclases[J]. Proc Natl Acad Sci USA, 2001, 98(5):2905-2910.DOI:10.1073/pnas.051618398. |
[24] | KIM J, DELLAPENNA D. Defining the primary route for lutein synthesis in plants:the role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3[J]. Proc Natl Acad Sci USA, 2006, 103(9):3474-3479.DOI:10.1073/pnas.0511207103. |
[25] | TIAN L, MUSETTI V, KIM J, et al. The Arabidopsis LUT1 locus encodes a member of the cytochrome p450 family that is required for carotenoid epsilon-ring hydroxylation activity[J]. PNAS, 2004, 101(1):402-407.DOI:10.1073/pnas.2237237100. |
[26] | SUN Z, GANTT E, CUNNINGHAM F X J. Cloning and functional analysis of the beta-carotene hydroxylase of Arabidopsis thaliana[J]. J Biol Chem, 1996, 271(40):24349-24352.DOI:10.1074/jbc.271.40.24349. |
[27] | YAMAMOTO H Y. Biochemistry of the violaxanthin cycle in higher plants[J]. Pure Appl Chem, 1979, 51(3):639-648.DOI:10.1351/pac197951030639. |
[28] | MARIN E, NUSSAUME L, QUESADA A, et al. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia,a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana[J]. EMBO J, 1996, 15(10):2331-2342. |
[29] | BUGOS R C, YAMAMOTO H Y. Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli[J]. Proc Natl Acad Sci USA, 1996, 93(13):6320-6325.DOI:10.1073/pnas.93.13.6320. |
[30] | AL-BABILI S, HUGUENEY P, SCHLEDZ M, et al. Identification of a novel gene coding for neoxanthin synthase from Solanum tuberosum[J]. FEBS Lett, 2000, 485(2/3):168-172.DOI:10.1016/S0014-5793(00)02193-1. |
[31] | BOUVIER F, HUGUENEY P, D’HARLINGUE A, et al. Xanthophyll biosynthesis in chromoplasts:isolation and molecular cloning of an enzyme catalyzing the conversion of 5,6-epoxycarotenoid into ketocarotenoid[J]. Plant J, 1994, 6(1):45-54.DOI:10.1046/j.1365-313x.1994.6010045.x. |
[32] | YU S, LI M, DUBCOVSKY J, et al. Mutant combinations of lycopene varepsilon-cyclase and beta-carotene hydroxylase 2 homoeologs increased beta-carotene accumulation in endosperm of tetraploid wheat (Triticum turgidum L.) grains[J]. Plant Biotechnology Journal, 2022, 20(3): 564-576. DOI: 10.1111/pbi.13738. |
[33] | WALTER M H, STRACK D. Carotenoids and their cleavage products:biosynthesis and functions[J]. Nat Prod Rep, 2011, 28(4):663-692.DOI:10.1039/C0NP00036A. |
[34] | TAN B C, JOSEPH L M, DENG W T, et al. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family[J]. Plant J, 2003, 35(1):44-56.DOI:10.1046/j.1365-313x.2003.01786.x. |
[35] | SCHWARTZ S H, QIN X Q, ZEEVAART J A D. Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants,genes,and enzymes[J]. Plant Physiol, 2003, 131(4):1591-1601.DOI:10.1104/pp.102.017921. |
[36] | VOGEL J T, TAN B C, MCCARTY D R, et al. The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity,cleaving multiple carotenoids at two different bond positions[J]. J Biol Chem, 2008, 283(17):11364-11373.DOI:10.1074/jbc.M710106200. |
[37] | LI T, DENG Y J, LIU J X, et al. DcCCD4 catalyzes the degradation of alpha-carotene and beta-carotene to affect carotenoid accumulation and taproot color in carrot[J]. The Plant Journal, 2021, 108(4): 1116-1130. DOI: 10.1111/tpj.15498. |
[38] | RUYTER-SPIRA C, AL-BABILI S, VAN DER KROL S, et al. The biology of strigolactones[J]. Trends Plant Sci, 2013, 18(2):72-83.DOI:10.1016/j.tplants.2012.10.003. |
[39] | KO M R, SONG M H, KIM J K, et al. RNAi-mediated suppression of three carotenoid-cleavage dioxygenase genes,OsCCD1,4a,and 4b,increases carotenoid content in rice[J]. J Exp Bot, 2018, 69(21):5105-5116.DOI:10.1093/jxb/ery300. |
[40] | OHMIYA A. Diversity of carotenoid composition in flower petals[J]. Jpn Agric Res Q JARQ, 2011, 45(2):163-171.DOI:10.6090/jarq.45.163. |
[41] | ZHU C F, BAI C, SANAHUJA G, et al. The regulation of carotenoid pigmentation in flowers[J]. Arch Biochem Biophys, 2010, 504(1):132-141.DOI:10.1016/j.abb.2010.07.028. |
[42] | XIONG C, LUO D, LIN A H, et al. A tomato B-box protein SlBBX20 modulates carotenoid biosynthesis by directly activating PHYTOENE SYNTHASE 1,and is targeted for 26S proteasome-mediated degradation[J]. New Phytol, 2019, 221(1):279-294.DOI:10.1111/nph.15373. |
[43] | DEL VILLAR-MARTÍNEZ A A, GARCÍA-SAUCEDO P A, CARABEZ-TREJO A, et al. Carotenogenic gene expression and ultrastructural changes during development in marigold[J]. J Plant Physiol, 2005, 162(9):1046-1056.DOI:10.1016/j.jplph.2004.12.004. |
[44] | MOEHS C P, TIAN L, OSTERYOUNG K W, et al. Analysis of carotenoid biosynthetic gene expression during marigold petal development[J]. Plant Mol Biol, 2001, 45(3):281-293.DOI:10.1023/A:1006417009203. |
[45] | ZHANG H L, ZHANG S Y, ZHANG H, et al. Carotenoid metabolite and transcriptome dynamics underlying flower color in marigold (Tagetes erecta L.)[J]. Sci Rep, 2020, 10:16835.DOI:10.1038/s41598-020-73859-7. |
[46] | KISHIMOTO S, MAOKA T, NAKAYAMA M, et al. Carotenoid composition in petals of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura)[J]. Phytochemistry, 2004, 65(20):2781-2787.DOI:10.1016/j.phytochem.2004.08.038. |
[47] | PARK C H, CHAE S C, PARK S Y, et al. Anthocyanin and carotenoid contents in different cultivars of Chrysanthemum (Dendranthema grandiflorum Ramat.) flower[J]. Molecules, 2015, 20(6):11090-11102.DOI:10.3390/molecules200611090. |
[48] | KISHIMOTO S, OHMIYA A. Regulation of carotenoid biosynthesis in petals and leaves of Chrysanthemum (Chrysanthemum morifolium)[J]. Physiol Plant, 2006, 128(3):436-447.DOI:10.1111/j.1399-3054.2006.00761.x. |
[49] | OHMIYA A, KISHIMOTO S, AIDA R, et al. Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in Chrysanthemum petals[J]. Plant Physiol, 2006, 142(3):1193-1201.DOI:10.1104/pp.106.087130. |
[50] | HUANG H F, GAO X K, GAO X, et al. Flower color mutation,pink to orange,through CmGATA4-CCD4a-5 module regulates carotenoids degradation in chrysanthemum[J]. Plant Sci, 2022, 322:111290.DOI:10.1016/j.plantsci.2022.111290. |
[51] | GIULIANO G, BARTLEY G E, SCOLNIK P A. Regulation of carotenoid biosynthesis during tomato development[J]. Plant Cell, 1993, 5(4):379-387.DOI:10.1105/tpc.5.4.379. |
[52] | RONEN G, COHEN M, ZAMIR D, et al. Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta[J]. Plant J Cell Mol Biol, 1999, 17(4):341-51. |
[53] | PECKER I, GABBAY R, CUNNINGHAM F X Jr, et al. Cloning and characterization of the cDNA for lycopene β-cyclase from tomato reveals decrease in its expression during fruit ripening[J]. Plant Mol Biol, 1996, 30(4):807-819.DOI:10.1007/BF00019013. |
[54] | CORONA V, ARACRI B, KOSTURKOVA G, et al. Regulation of a carotenoid biosynthesis gene promoter during plant development[J]. Plant J, 1996, 9(4):505-512.DOI:10.1046/j.1365-313x.1996.09040505.x. |
[55] | GAO M, QU H, GAO L, et al. Dissecting the mechanism of Solanum lycopersicum and Solanum chilense flower colour formation[J]. Plant Biol (Stuttg), 2015, 17(1):1-8.DOI:10.1111/plb.12186. |
[56] | GALPAZ N, RONEN G, KHALFA Z, et al. A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus[J]. Plant Cell, 2006, 18(8):1947-1960.DOI:10.1105/tpc.105.039966. |
[57] | HOSHINO A, JAYAKUMAR V, NITASAKA E, et al. Genome sequence and analysis of the Japanese morning glory Ipomoea nil[J]. Nat Commun, 2016, 7:13295.DOI:10.1038/ncomms13295. |
[58] | YAMAMIZO C, KISHIMOTO S, OHMIYA A. Carotenoid composition and carotenogenic gene expression during Ipomoea petal development[J]. J Exp Bot, 2009, 61(3):709-719.DOI:10.1093/jxb/erp335. |
[59] | WATANABE K, ODA-YAMAMIZO C, SAGE-ONO K, et al. Overexpression of carotenogenic genes in the Japanese morning glory Ipomoea (Pharbitis) nil[J]. Plant Biotechnology, 2017, 34(4): 177-185. DOI: 10.5511/plantbiotechnology.17.1016a. |
[60] | WATANABE K, ODA-YAMAMIZO C, SAGE-ONO K, et al. Alteration of flower colour in Ipomoea nil through CRISPR/Cas9-mediated mutagenesis of carotenoid cleavage dioxygenase 4[J]. Transgenic Res, 2018, 27(1):25-38.DOI:10.1007/s11248-017-0051-0. |
[61] | 向其柏, 刘玉莲. 中国桂花品种图志[M]. 杭州: 浙江科学技术出版社, 2008. |
XIANG Q B, LIU Y L. An illustrated monograph of the sweet osmanthus cultivars in China[M]. Hangzhou: Zhejiang Science & Technology Press, 2008. | |
[62] | 臧德奎, 向其柏. 桂花品种研究[J]. 南京林业大学学报(自然科学版), 2004(S1):7-13. |
ZANG D K, XIANG Q B. Studies on Osmanthus fragrans cultivars[J]. J Nanjing For Univ (Nat Sci Ed), 2004(S1):7-13.DOI:10.3969/j.issn.1000-2006.2014.07.002. | |
[63] | WANG Y G, ZHANG C, DONG B, et al. Carotenoid accumulation and its contribution to flower coloration of Osmanthus fragrans[J]. Front Plant Sci, 2018, 9:1499.DOI:10.3389/fpls.2018.01499. |
[64] | CHEN H G, ZENG X L, YANG J, et al. Whole-genome resequencing of Osmanthus fragrans provides insights into flower color evolution[J]. Hortic Res, 2021, 8:98.DOI:10.1038/s41438-021-00531-0. |
[65] | LIU Y C, DONG B, ZHANG C, et al. Effects of exogenous abscisic acid (ABA) on carotenoids and petal color in Osmanthus fragrans ‘Yanhonggui’[J]. Plants (Basel), 2020, 9(4):454.DOI:10.3390/plants9040454. |
[66] | XI W, HE Y H, ZHU L L, et al. CPTA treatment reveals potential transcription factors associated with carotenoid metabolism in flowers of Osmanthus fragrans[J]. Hortic Plant J, 2021, 7(5):479-487.DOI:10.1016/j.hpj.2021.03.002. |
[67] | HAN Y J, WANG X H, CHEN W C, et al. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in flower petal of Osmanthus fragrans[J]. Tree Genet Genomes, 2014, 10(2):329-338.DOI:10.1007/s11295-013-0687-8. |
[68] | HAO Z D, LIU S Q, HU L F, et al. Transcriptome analysis and metabolic profiling reveal the key role of carotenoids in the petal coloration of Liriodendron tulipifera[J]. Hortic Res, 2020, 7:70.DOI:10.1038/s41438-020-0287-3. |
[69] | WANG W J, LIU G S, NIU H X, et al. The F-box protein COI1 functions upstream of MYB305 to regulate primary carbohydrate metabolism in tobacco (Nicotiana tabacum L.cv.TN90)[J]. J Exp Bot, 2014, 65(8):2147-2160.DOI:10.1093/jxb/eru084. |
[70] | LIU G Y, REN G, GUIRGIS A, et al. The MYB305 transcription factor regulates expression of nectarin genes in the ornamental tobacco floral nectary[J]. Plant Cell, 2009, 21(9):2672-2687.DOI:10.1105/tpc.108.060079. |
[71] | SAGAWA J M, STANLEY L E, LAFOUNTAIN A M, et al. An R2R3-MYB transcription factor regulates carotenoid pigmentation in Mimulus lewisii flowers[J]. New Phytol, 2016, 209(3):1049-1057.DOI:10.1111/nph.13647. |
[72] | STANLEY L E, DING B Q, SUN W, et al. A tetratricopeptide repeat protein regulates carotenoid biosynthesis and chromoplast development in monkeyflowers (Mimulus)[J]. Plant Cell, 2020, 32(5):1536-1555.DOI:10.1105/tpc.19.00755. |
[73] | MENG Y Y, WANG Z Y, WANG Y Q, et al. The MYB activator WHITE PETAL1 associates with MtTT8 and MtWD40-1 to regulate carotenoid-derived flower pigmentation in Medicago truncatula[J]. Plant Cell, 2019, 31(11):2751-2767.DOI:10.1105/tpc.19.00480. |
[74] | LI P H, CHEN B B, ZHANG G Y, et al. Regulation of anthocyanin and proanthocyanidin biosynthesis by Medicago truncatula bHLH transcription factor MtTT8[J]. New Phytol, 2016, 210(3):905-921.DOI:10.1111/nph.13816. |
[75] | HAN Y J, WU M, CAO L Y, et al. Characterization of OfWRKY3,a transcription factor that positively regulates the carotenoid cleavage dioxygenase gene OfCCD4 in Osmanthus fragrans[J]. Plant Mol Biol, 2016, 91(4):485-496.DOI:10.1007/s11103-016-0483-6. |
[76] | 陆晨飞, 刘钰婷. 类胡萝卜素代谢调控与植物颜色变异[J]. 北方园艺, 2016(16):193-199. |
LU C F, LIU Y T. Plant color mutants and the regulation of carotenoids metabolism[J]. North Hortic, 2016(16):193-199.DOI:10.11937/bfyy.201616049. | |
[77] | MENG F L, LI Y Y, LI S W, et al. Carotenoid biofortification in tomato products along whole agro-food chain from field to fork[J]. Trends Food Sci Technol, 2022, 124:296-308.DOI:10.1016/j.tifs.2022.04.023. |
[78] | RODRIGUEZ-CONCEPCION M, DARÒS J A. Transient expression systems to rewire plant carotenoid metabolism[J]. Curr Opin Plant Biol, 2022, 66:102190.DOI:10.1016/j.pbi.2022.102190. |
[79] | EISENSTEIN M. Seven technologies to watch in 2022[J]. Nature, 2022, 601(7894):658-661.DOI:10.1038/d41586-022-00163-x. |
[80] | ANJANAPPA R B, GRUISSEM W. Current progress and challenges in crop genetic transformation[J]. J Plant Physiol, 2021, 261:153411.DOI:10.1016/j.jplph.2021.153411. |
[81] | ZHANG Y X, MALZAHN A A, SRETENOVIC S, et al. The emerging and uncultivated potential of CRISPR technology in plant science[J]. Nat Plants, 2019, 5(8):778-794.DOI:10.1038/s41477-019-0461-5. |
[1] | ZHANG Qiang, ZHOU Peng, LIU Changlai, YU Yongfan, ZHANG Min, YANG Jiading. Comparison of transcriptomic activity of Ilex integra and I. purpurea roots with NaCl treatments [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 99-108. |
[2] | ZHANG Wangxiang, ZHANG Long, JIANG Hao, FAN Junjun, ZHOU Ting, CAO Fuliang. A new ornamental crabapple cultivar ‘Luokeke Nüshi’ [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(04): 203-204. |
[3] | PU Jing,ZHANG Jing, ZHAO Cong, FAN Junjun, JIANG Wenlong, ZHANG Wangxiang,WANG Gaiping. Analysis and evaluation on flower color characteristics of the Malus ‘Purple Prince' half-sib progenies [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(01): 18-24. |
[4] | FAN Ben, CHEN Sheng, LI Yulong. Structure, function and mechanisms of bacterial protein Hfq [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(05): 155-162. |
[5] | MU Hongna1, 2,3,SUN Taoze,YANG Xiulian, WANG Lianggui. Differential expression of flower color related genes of Osmanthus fragrans Lour. ‘Chenghongdangui’ and ‘Zaoyingui’ [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2015, 39(03): 183-186. |
[6] | CHEN Shubo,DING Yanfen,ZHAO Tianpeng. A review of the research on genetic engineering of flower color in Petunia hybrida [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(增刊): 134-138. |
[7] | ZHAO Chang-ling~1,CHEN Jun-yu~2,LIU Xue-lan~3,ZHAO Xing-fa~3,LIU Quan-long~3. Effects of Physical and Chemical Factors on the Color Expression of the Flower Color Pigment of Prunus mume Sieb.et Zucc. ’Nanjing Hongxu’(Nanjing red-bearded) [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2004, 28(02): 27-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||