JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (1): 47-56.doi: 10.12302/j.issn.1000-2006.202108030
Special Issue: 智慧林业之森林参数遥感估测
Previous Articles Next Articles
GUO Changyou1(), GUO Hongxian2, WANG Baohua2,*(
)
Received:
2021-08-15
Accepted:
2021-10-13
Online:
2023-01-30
Published:
2023-02-01
Contact:
WANG Baohua
E-mail:1742568011@qq.com;740285266@qq.com
CLC Number:
GUO Changyou, GUO Hongxian, WANG Baohua. Study on increment model of individual-tree diameter of Cunninghamia lanceolata in consideration of climatic factors[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 47-56.
Table 1
The statistics of modeling data for Cunninghamia lanceolata"
统计值 statistics | 胸径/cm DBH | 林分密度/ (株·hm-2) stand density | 胸高 断面积/ (m2·hm-2) basal area | 海拔/m elevation | 坡度/ (°) slope | 坡向/ (°) aspect | 林龄/a stand age | 树高/m tree height | ||
---|---|---|---|---|---|---|---|---|---|---|
期初 initial | 期末 after a 5-year growth | 林分平均 quadratic mean | ||||||||
平均值 mean | 10.64 | 12.89 | 10.94 | 1 668.60 | 12.62 | 430.00 | 28.98 | 169.78 | 16.45 | 8.40 |
标准差 SD | 4.75 | 4.94 | 3.39 | 854.77 | 10.56 | 305.45 | 9.84 | 107.08 | 7.99 | 2.91 |
最小值 min | 5.00 | 5.10 | 6.30 | 313.00 | 2.09 | 60.00 | 5.00 | 0.00 | 4.00 | 1.50 |
最大值 max | 34.80 | 36.70 | 24.78 | 3 209.00 | 40.38 | 1 555.00 | 48.00 | 315.00 | 40.00 | 18.00 |
Table 2
The statistics of climate factors in the study area"
统计值 statistics | 气温/℃ temperature | 降水量/mm precipitation | 生长季平均 气温/℃ mean annual growing season temperature | 年平均 气温/℃ mean annual temperature | 年平均 降水量/mm mean annual precipitation | ||
---|---|---|---|---|---|---|---|
1月 Jan. | 7月 Jul. | 1月 Jan. | 7月 Jul. | ||||
平均值 mean | 1.38 | 26.11 | 61.04 | 182.80 | 22.48 | 17.03 | 1 480.00 |
标准差 SD | 1.00 | 1.40 | 16.32 | 42.60 | 1.35 | 1.20 | 230.25 |
最小值 min | -2.25 | 21.35 | 35.20 | 116.20 | 17.90 | 12.74 | 1 152.00 |
最大值 max | 3.32 | 28.68 | 139.60 | 333.40 | 24.61 | 18.86 | 2 429.00 |
Table 3
The fitting results of Chinese fir individual-tree diameter increment models based on different dependent variables"
因变量 dependent variable | 自变量 independent variable | 参数估计值 estimate | 标准差 SD | t | P | BIAS | RMSE | R2 |
---|---|---|---|---|---|---|---|---|
截距intercept | 3.451 | 0.609 | 5.671 | <0.05 | ||||
1/D1 | 9.320 | 0.585 | 15.922 | <0.05 | ||||
N1 | -1.132×10-4 | 3.382×10-5 | -3.348 | <0.05 | ||||
D2-D1 | SBAL1/D1 | -12.570 | 0.406 | -30.989 | <0.05 | 1.041 | 1.318 | 0.277 |
Tmax07 | -0.108 | 2.090×10-2 | -5.158 | <0.05 | ||||
Tmin01 | 0.285 | 3.204×10-2 | 8.907 | <0.05 | ||||
PMA1 | 8.965×10-4 | 1.192×10-4 | 7.519 | <0.05 | ||||
SLN | 4.669×10-2 | 5.118×10-3 | 9.123 | <0.05 | ||||
截距intercept | 2.406 | 0.172 | 13.966 | <0.05 | ||||
1/D1 | 2.726 | 0.167 | 16.315 | <0.05 | ||||
SBAL1/D1 | -4.280 | 0.103 | -41.491 | <0.05 | ||||
ln(D2-D1+1) | Tmin01 | 0.098 | 0.011 | 8.572 | <0.05 | 1.007 | 1.339 | 0.325 |
Tgrowth | -0.070 | 0.008 | -8.612 | <0.05 | ||||
PPT01 | 0.002 | 0.000 | 4.166 | <0.05 | ||||
SLN | 0.007 | 0.001 | 4.452 | <0.05 | ||||
截距intercept | 2.783 | 1.096×10-1 | 25.389 | <0.05 | ||||
D1 | 4.745×10-2 | 4.283×10-3 | 11.080 | <0.05 | ||||
SBAL1/D1 | -7.575 | 3.112×10-1 | -24.342 | <0.05 | ||||
ln( | SBA1 | -8.268×10-3 | 2.233×10-3 | -3.702 | <0.05 | 1.006 | 1.341 | 0.471 |
PMA1 | 6.473×10-4 | 6.153×10-5 | 10.520 | <0.05 | ||||
Tmin01 | 8.088×10-2 | 1.356×10-2 | 5.966 | <0.05 | ||||
SLN | 1.349×10-2 | 2.605×10-3 | 5.178 | <0.05 | ||||
截距intercept | 1.054×102 | 19.040 | 5.538 | <0.05 | ||||
1/D1 | 68.550 | 21.850 | 3.138 | <0.05 | ||||
N1 | -1.679×10-2 | 8.305×10-4 | -20.212 | <0.05 | ||||
D22-D21 | DR1 | 90.800 | 3.140 | 28.919 | <0.05 | 1.045 | 1.326 | 0.348 |
Tmin01 | 7.397 | 1.171 | 6.316 | <0.05 | ||||
Tgrowth | -5.979 | -0.831 | -7.193 | <0.05 | ||||
PPT07 | 3.278×10-2 | 1.506×10-2 | 2.177 | <0.05 | ||||
SLN | 1.116 | 0.147 | 7.579 | <0.05 |
Table 4
Partial results of combinations of random parameters for linear mixed-effects individual-tree diameter increment model for Chinese fir"
模型 model | 随机效应参数 random parameters | AIC | BIC | -2LL | LRT | P |
---|---|---|---|---|---|---|
基础模型 basic model | 无 | 7 497 | 7 547 | 7 481 | ||
Model.1 | b4 | 6 381 | 6 437 | 6 363 | 1 118.15 | <0.000 1 |
Model.2 | b2、b4 | 6 221 | 6 289 | 6 199 | 164.07 | <0.000 1 |
Model.3 | b1、b2、b4 | 6 210 | 6 297 | 6 182 | 17.09 | 0.000 7 |
Model.4 | b2、b3、b5、b6 | 6 209 | 6 320 | 6 173 | 9.39 | 0.052 1 |
Model.5 | b0、b1、b2、b3、b6 | 6 209 | 6 352 | 6 163 | — | — |
Model.6 | — | 未收敛 | — | — | ||
Model.7 | — | 未收敛 | — | — |
Table 5
Comparison of mixed-effects models based on different variance functions and correlation structures"
模型 model | 异方差函数 variance function | 自相关结构 correlation structure | AIC | BIC | -2LL | LRT | P |
---|---|---|---|---|---|---|---|
Model.3 | 无 | 无 | 6 210 | 6 297 | 6 182 | — | — |
Model.3.1 | power | 无 | 6 104 | 6 197 | 6 074 | 108.28 | <0.000 1 |
Model.3.2 | exponent | 无 | 6 084 | 6 176 | 6054 | 128.66 | <0.000 1 |
Model.3.3 | ConstPower | 无 | 6 106 | 6 205 | 6 074 | 108.27 | <0.000 1 |
Model.3.2.1 | exponent | CS | — | 未收敛 | — | — | — |
Model.3.2.2 | exponent | AR(1) | 5 988 | 6 087 | 5 956 | 97.43 | <0.000 1 |
Model.3.2.3 | exponent | ARMA(1,1) | 5 914.99 | 6 020 | 5 881 | 172.51 | <0.000 1 |
[1] | 符利勇, 唐守正, 张会儒, 等. 基于多水平非线性混合效应蒙古栎林单木断面积模型[J]. 林业科学研究, 2015, 28(1):23-31. |
FU L Y, TANG S Z, ZHANG H R, et al. Multilevel nonlinear mixed-effects basal area models for individualtrees of Quercus mongolica[J]. Forest Research, 2015, 28(1):23-31. DOI:10.13275/j.cnki.lykxyj.2015.01.004.
doi: 10.13275/j.cnki.lykxyj.2015.01.004 |
|
[2] | 彭娓, 李凤日, 董利虎. 黑龙江省长白落叶松人工林单木生长模型[J]. 南京林业大学学报(自然科学版), 2018, 42(3):19-27. |
PENG W,LI F R,DONG L H.Individual tree diameter growth model for Larix olgensis plantation in Heilongjiang Province,China[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(3):19-27.DOI:10.3969/j.issn.1000-2006.201711025.
doi: 10.3969/j.issn.1000-2006.201711025 |
|
[3] |
GRÉGOIRE T G, SCHABENBERGER O, BARRETT J P. Linear modelling of irregularly spaced,unbalanced,longitudinal data from permanent-plot measurements[J]. Can J For Res, 1995, 25(1):137-156.DOI:10.1139/x95-017.
doi: 10.1139/x95-017 |
[4] |
KESELMAN H J, ALGINA J, KOWALCHUK R K, et al. A comparison of recent approaches to the analysis of repeated measurements[J]. Br J Math Stat Psychol, 1999, 52(1):63-78.DOI:10.1348/000711099158964.
doi: 10.1348/000711099158964 |
[5] | 王文斗, 李凤日, 那冬晨, 等. 辽东栎单木生长模型的研究[J]. 林业科技, 2005(2):11-13. |
WANG W D, LI F R, NA D C, et al. Research on the individual tree growth model of Quercus liaotungensis[J]. For Sci Technol, 2005(2):11-13. | |
[6] | 陈国栋, 杜研, 丁佩燕, 等. 基于混合效应模型的新疆天山云杉单木胸径预测模型构建[J]. 北京林业大学学报, 2020, 42(7):12-22. |
CHEN G D, DU Y, DING P Y, et al. Predicting model construction of single tree DBH of Picea schrenkiana in Xinjiang of northwestern China based on mixed effects model[J]. J Beijing For Univ, 2020, 42(7):12-22.DOI:10.12171/j.1000-1522.20190236.
doi: 10.12171/j.1000-1522.20190236 |
|
[7] | 符利勇, 孙华. 基于混合效应模型的杉木单木冠幅预测模型[J]. 林业科学, 2013, 49(8):65-74. |
FU L Y, SUN H. Individual crown diameter prediction for Cunninghamia lanceolata forests based on mixed effects models[J]. Sci Silvae Sin, 2013, 49(8):65-74. | |
[8] |
樊伟, 许崇华, 崔珺, 等. 基于混合效应的大别山地区杉木树高-胸径模型比较[J]. 应用生态学报, 2017, 28(9):2831-2839.
doi: 10.13287/j.1001-9332.201709.036 |
FAN W, XU C H, CUI J, et al. Comparisons of height-diameter models of Chinese fir based on mixed effect in Dabie Mountain area,China[J]. Chin J Appl Ecol, 2017, 28(9):2831-2839.DOI:10.13287/j.1001-9332.201709.036.
doi: 10.13287/j.1001-9332.201709.036 |
|
[9] | 覃阳平, 张怀清, 陈永富, 等. 改进的简单竞争指标在单木生长模型中的应用[J]. 东北林业大学学报, 2014, 42(12):130-133,144. |
QIN Y P, ZHANG H Q, CHEN Y F, et al. Improved hegyi simple competition index in individual tree model[J]. J Northeast For Univ, 2014, 42(12):130-133,144.DOI:10.13759/j.cnki.dlxb.20141210.003.
doi: 10.13759/j.cnki.dlxb.20141210.003 |
|
[10] |
CROOKSTON N L, REHFELDT G E, DIXON G E, et al. Addressing climate change in the forest vegetation simulator to assess impacts on landscape forest dynamics[J]. For Ecol Manag, 2010, 260(7):1198-1211.DOI:10.1016/j.foreco.2010.07.013.
doi: 10.1016/j.foreco.2010.07.013 |
[11] |
LO Y H, BLANCO J A, SEELY B, et al. Relationships between climate and tree radial growth in interior British Columbia,Canada[J]. For Ecol Manag, 2010, 259(5):932-942.DOI:10.1016/j.foreco.2009.11.033.
doi: 10.1016/j.foreco.2009.11.033 |
[12] | 黄开勇, 刘达峰. 杉木:广西优良用材树种[J]. 广西林业, 2011(9):43-44. |
HUANG K Y, LIU D F. Cunninghamia lanceolata:an excellent timber tree species in Guangxi[J]. For Guangxi, 2011(9):43-44.DOI:10.3969/j.issn.1004-0390.2011.09.054.
doi: 10.3969/j.issn.1004-0390.2011.09.054 |
|
[13] | 国家林业局. 第八次全国森林资源清查结果[J]. 林业资源管理, 2014(1):1-2. |
State Forestry Administration. Results of the eighth national forest resources inventory[J]. For Resour Manag, 2014(1):1-2.DOI:10.13466/j.cnki.lyzygl.2014.01.001.
doi: 10.13466/j.cnki.lyzygl.2014.01.001 |
|
[14] | 王兵, 马向前, 郭浩, 等. 中国杉木林的生态系统服务价值评估[J]. 林业科学, 2009, 45(4):124-130. |
WANG B, MA X Q, GUO H, et al. Evaluation of the Chinese fir forest ecosystem services value[J]. Sci Silvae Sin, 2009, 45(4):124-130.DOI:10.3321/j.issn:1001-7488.2009.04.021.
doi: 10.3321/j.issn:1001-7488.2009.04.021 |
|
[15] | 臧颢. 区域尺度气候敏感的落叶松人工林林分生长模型[D]. 北京: 中国林业科学研究院, 2016. |
ZANG H. Regional-scale climate-sensitive stand growth models for larch plantations[D]. Beijing: Chinese Academy of Forestry, 2016. | |
[16] | 李春明. 基于两层次线性混合效应模型的杉木林单木胸径生长量模型[J]. 林业科学, 2012, 48(3):66-73. |
LI C M. Individual tree diameter increment model for Chinese fir plantation based on two-level linear mixed effects models[J]. Sci Silvae Sin, 2012, 48(3):66-73.DOI:10.11707/j.1001-7488.20120311.
doi: 10.11707/j.1001-7488.20120311 |
|
[17] | 卢军. 长白山地区天然混交林单木生长模型的研究[D]. 哈尔滨: 东北林业大学, 2005. |
LU J. Individual tree growth models of natural mixed forest in Changbai Mountains[D]. Harbin: Northeast Forestry University, 2005. | |
[18] | 刘平, 马履一, 王玉涛, 等. 油松中幼人工林单木胸径生长模型研究[J]. 沈阳农业大学学报, 2009, 40(2):197-201. |
LIU P, MA L Y, WANG Y T, et al. Individual DBH growth model of Pinus tabulaeformis young-middle aged plantation[J]. J Shenyang Agric Univ, 2009, 40(2):197-201.DOI:10.3969/j.issn.1000-1700.2009.02.016.
doi: 10.3969/j.issn.1000-1700.2009.02.016 |
|
[19] | 王建军, 曾伟生, 孟京辉. 考虑预估期间林木枯死及采伐影响的杉木单木胸高断面积生长模型研究[J]. 西北林学院学报, 2017, 32(3):181-185. |
WANG J J, ZENG W S, MENG J H. Individual-tree basal area growth model for Cunninghamia lanceolata with the consideration of thinning and tree mortality in the prediction interval[J]. J Northwest For Univ, 2017, 32(3):181-185.DOI:10.3969/j.issn.1001-7461.2017.03.34.
doi: 10.3969/j.issn.1001-7461.2017.03.34 |
|
[20] |
MOORE J A, BUDELSKY C A, SCHLESINGER R C. A new index representing individual tree competitive status[J]. Can J For Res, 1973, 3(4):495-500.DOI:10.1139/x73-073.
doi: 10.1139/x73-073 |
[21] |
STAGE A R. An expression for the effect of aspect,slope,and habitat type on tree growth[J]. For Sci, 1976, 22(4):457-460.DOI:10.1093/forestscience/22.4.457.
doi: 10.1093/forestscience/22.4.457 |
[22] |
LI Y, WANG W, ZENG W S, et al. Development of crown ratio and height to crown base models for Masson pine in Southern China[J]. Forests, 2020, 11(11):1216.DOI:10.3390/f11111216.
doi: 10.3390/f11111216 |
[23] |
WANG W W, CHEN X Y, ZENG W S, et al. Development of a mixed-effects individual-tree basal area increment model for oaks (Quercus spp.) considering forest structural diversity[J]. Forests, 2019, 10(6):474.DOI:10.3390/f10060474.
doi: 10.3390/f10060474 |
[24] |
WEINER J. Asymmetric competition in plant populations[J]. Trends Ecol Evol, 1990, 5(11):360-364.DOI:10.1016/0169-5347(90)90095-U.
doi: 10.1016/0169-5347(90)90095-U pmid: 21232393 |
[25] | 马武, 雷相东, 徐光, 等. 蒙古栎天然林单木生长模型研究:Ⅰ.直径生长量模型[J]. 西北农林科技大学学报(自然科学版), 2015, 43(2):99-105. |
MA W,LEI X D,XU G, et al. Growth models for natural Quercus mongolicaforests:Ⅰ.diameter growth model[J]. J Northwest A & F Univ (Nat Sci Ed), 2015, 43(2):99-105.DOI:10.13207/j.cnki.jnwafu.2015.02.011.
doi: 10.13207/j.cnki.jnwafu.2015.02.011 |
|
[26] | 雷相东, 李永慈, 向玮. 基于混合模型的单木断面积生长模型[J]. 林业科学, 2009, 45(1):74-80. |
LEI X D, LI Y C, XIANG W. Individual basal area growth model using multi-level linear mixed model with repeated measures[J]. Sci Silvae Sin, 2009, 45(1):74-80.DOI:10.3321/j.issn:1001-7488.2009.01.014.
doi: 10.3321/j.issn:1001-7488.2009.01.014 |
|
[27] |
MÄKINEN H, NÖJD P, KAHLE H P, et al. Large-scale climatic variability and radial increment variation of Picea abies (L.) Karst[J]. Trees, 2003, 17(2):173-184.DOI:10.1007/s00468-002-0220-4.
doi: 10.1007/s00468-002-0220-4 |
[28] |
张海平, 李凤日, 董利虎, 等. 基于气象因子的白桦天然林单木直径生长模型[J]. 应用生态学报, 2017, 28(6):1851-1859.
doi: 10.13287/j.1001-9332.201706.009 |
ZHANG H P, LI F R, DONG L H, et al. Individual tree diameter increment model for natural Betula platyphylla forests based on meteorological factors[J]. Chin J Appl Ecol, 2017, 28(6):1851-1859.DOI:10.13287/j.1001-9332.201706.009.
doi: 10.13287/j.1001-9332.201706.009 |
|
[29] |
LIANG E Y, SHAO X M, HU Y X, et al. Dendroclimatic evaluation of climate-growth relationships of Meyer spruce (Picea meyeri) on a sandy substrate in semi-arid grassland,north China[J]. Trees, 2001, 15(4):230-235.DOI:10.1007/s004680100097.
doi: 10.1007/s004680100097 |
[30] |
ARCHAMBAULT S, BERGERON Y. An 802-year tree-ring chronology from the Quebec boreal forest[J]. Can J For Res, 1992, 22(5):674-682.DOI:10.1139/x92-090.
doi: 10.1139/x92-090 |
[31] | 王向荣, 孙海龙, 余鑫, 等. 坡向和坡位对水曲柳中龄林生长的影响[J]. 山西农业大学学报(自然科学版), 2011, 31(1):30-34. |
WANG X R,SUN H L,YU X, et al. Influence of aspect and position of slope on the growth of mid-age Fraxinus mandshurica Rupr.plantation[J]. J Shanxi Agric Univ (Nat Sci Ed), 2011, 31(1):30-34.DOI:10.13842/j.cnki.issn1671-8151.2011.01.024.
doi: 10.13842/j.cnki.issn1671-8151.2011.01.024 |
|
[32] |
WANG W W, BAI Y F, JIANG C Q, et al. Development of a linear mixed-effects individual-tree basal area increment model for Masson pine in Hunan Province,south-central China[J]. J Sustain For, 2020, 39(5):526-541.DOI:10.1080/10549811.2019.1688172.
doi: 10.1080/10549811.2019.1688172 |
[1] | YE Limin, XU Yuanke, ZHOU Yizhi, CHEN Zhenglu, WANG Yixiang, GE Hongli. Comprehensive effect of understory medicinal herb cultivation on individual volume growth in near-mature, mature and overmature Cunninghamia lanceolata forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 48-56. |
[2] | XIAO Hui, LIN Zezhong, SU Shunde, JIANG Xiaoli, CHEN Haiqiang, WU Wei, LUO Shuijin, PAN Longying, ZHENG Renhua. Genetic variation analysis and selection of clones based on short-term nursery testing on Cunninghamia lanceolata [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 63-70. |
[3] | DING Yong, LIU Xin, ZHANG Jinchi, WANG Yuhao, CHEN Meiling, LI Tao, LIU Xiaowu, ZHOU Yuexiang, SUN Lianhao, LIAO Yi. Effects of acid rain-based transformation on Cunninghamia lanceolata fine root growth and soil nutrient content [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 90-98. |
[4] | HAN Xinyu, GAO Lushuang, QIN Li, PANG Rongrong, LIU Mingqian, ZHU Yihong, TIAN Yiyu, ZHANG Jin. Effect of stand density on radial growth-climate relationship of Larix gmelinii [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 182-190. |
[5] | LU Xudong, DONG Yuran, LI Yao, MAO Lingfeng. Community assembly mechanism for different planting ages of Chinese fir artificial forests in subtropical China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 67-73. |
[6] | WANG Linlong, ZHANG Huaiqing, YANG Tingdong, ZHANG Jing, LEI Kexin, CHEN Chuansong, ZHANG Huacong, LIU Yang, CUI Zeyu, ZUO Yuanqing. Research on algorithm of collision detection and response to optimize forest simulation [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 19-27. |
[7] | TANG Yiren, JIA Weiwei, WANG Fan, SUN Yuman, ZHANG Ying. Constructing a biomass model of Larix olgensis primary branches based on TLS [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 130-140. |
[8] | ZHAO Mingzhen, LIU Jing, ZOU Xianhua, ZHENG Hong, FAN Fujing, LIN Kaimin, MA Xiangqing, LI Ming. Effects of thinning and fertilization on the growth and timber assortment structure of middle-aged Chinese fir forest [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 70-78. |
[9] | GAO Yu, LI Jing, LIU Yang, WU Yahan, GONG Jiaxing, XIN Qirui. Application of structural equation model in growth of Larix gmelinii stand [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 38-46. |
[10] | LIU Qingqing, HUANG Zhijun, MA Xiangqing, WANG Zhengning, XING Xianshuang, LIU Bo. Changes of seedling growth and C、N、P stoichiometric characteristics in Chinese fir under shading [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 74-82. |
[11] | XUE Beibei, TIAN Guoshuang. An analysis of optimal rotation periods and carbon sequestration cost of Chinese fir plantations under different carbon payment mechanisms [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 27-34. |
[12] | WU Fan, ZHU Peihuang, JI Kongshu. Responses of masson pine(Pinus massoniana) distribution patterns to future climate change [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 196-204. |
[13] | XIONG Guangkang, LI Yueqiao, XIONG Youqiang, DUAN Aiguo, CAO Dechun, SUN Jianjun, NIE Linya, SHENG Weitong. Effects of low stand density afforestation on the growth,stem-form and timber assortment structure of Cunninghamia lanceolata plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 165-173. |
[14] | ZHANG Jiling, LI Mingyang, LI Yong, LIU Li, FEI Yuchong, CAO Guangqiu. Effects of mechanical damage treatment on the tillering ability and endogenous hormone content of Chinese fir clones [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(2): 153-158. |
[15] | GUO Chuanyang, LIN Kaimin, ZHENG Mingming, REN Zhengbiao, LI Mao, ZHENG Hong, YOU Yunfei, CHEN Zhiyun. Short-term effects of thinning on soil microbial biomass carbon and nitrogen in a Cunninghamia lanceolata plantation [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(5): 125-131. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||