JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (1): 83-91.doi: 10.12302/j.issn.1000-2006.202106018
Previous Articles Next Articles
KONG Xin1,2(), WANG Aiying3(
), HAO Guangyou1,*(
), NING Qiurui1,2, WANG Miao1,2, YIN Xiaohan1,4, ZHOU Yongjiao1,2
Received:
2021-06-11
Accepted:
2022-04-12
Online:
2023-01-30
Published:
2023-02-01
Contact:
HAO Guangyou
E-mail:3160563672@qq.com;aiyingwqepq@163.com;haogy@iae.ac.cn
CLC Number:
KONG Xin, WANG Aiying, HAO Guangyou, NING Qiurui, WANG Miao, YIN Xiaohan, ZHOU Yongjiao. Coordinated responses of hydraulic architecture and photosynthetic characteristics in Fraxinus mandschurica seedlings to change of light intensity irradiance[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 83-91.
Table 1
The growth, biomass allocation and photosynthetic characteristics of Fraxinus mandshurica seedlings grown under different light treatments"
项目item | 功能性状 functional trait | 相对光强relative light intensity | P | Pi | |||
---|---|---|---|---|---|---|---|
100% | 60% | 30% | 15% | ||||
形态特征 morphological characteristics | 株高/cm height | 67.30±5.10 a | 74.5±5.06 a | 28.73±1.33 b | 30.53±1.92 b | <0.001 | 0.61 |
基径/mm basal diameter | 9.37±0.53 a | 8.56±0.46 a | 4.62±0.60 b | 4.58±0.14 b | <0.001 | 0.51 | |
叶片大小/cm2 leaf size | 57.65±12.28 a | 86.35±9.52 a | 65.50±1.33 a | 57.03±9.05 a | 0.153 | 0.34 | |
总叶面积/ cm2 leaf area | 1 384.17±7.38 a | 1 821.39±243.78 a | 704.25±159.28 b | 532.88±43.17 b | 0.001 | 0.71 | |
比叶面积/ (cm2·g-1) specific leaf area | 123.57±9.26 c | 304.48±22.03 b | 464.63±21.53 a | 471.69±12.64 a | <0.001 | 0.74 | |
平均mean | 0.58 | ||||||
生物量积累 biomass accumulation | 根生物量/ g root biomass | 35.22±2.50 a | 10.51±0.77 b | 2.29±0.56 c | 2.41±0.24 c | <0.001 | 0.93 |
粗根生物量/g coarse root biomass | 17.88±1.79 a | 5.81±0.30 b | 1.11±0.34 c | 1.20±0.12 c | <0.001 | 0.93 | |
细根生物量/g fine root biomass | 17.34±1.19 a | 4.69±0.48 b | 1.18±0.22 c | 1.21±0.13 c | <0.001 | 0.93 | |
茎生物量/g stem biomass | 12.69±1.79 a | 6.98±0.72 b | 1.69±0.36 c | 1.64±0.14 c | <0.001 | 0.87 | |
叶生物量/g leaf biomass | 11.32±0.78 a | 5.96±0.54 b | 1.53±0.38 c | 1.13±0.10 c | <0.001 | 0.90 | |
叶柄生物量/g petiole biomass | 2.72±0.12 a | 1.65±0.13 b | 0.35±0.08 c | 0.28±0.05 c | <0.001 | 0.90 | |
地上生物量/g aboveground biomass | 26.72±2.23 a | 14.59±1.31 b | 3.56±0.80 c | 3.05±0.27 c | <0.001 | 0.89 | |
总生物量/g total biomass | 61.94±4.40 a | 25.10±2.01 b | 5.85±1.36 c | 5.47±0.50 c | <0.001 | 0.91 | |
平均mean | 0.91 | ||||||
生物量分配 biomass allocation | 根生物量占比root mass ratio | 0.57±0.02 a | 0.42±0.01 bc | 0.39±0.01 c | 0.44±0.01 b | <0.001 | 0.30 |
茎生物量占比stem mass ratio | 0.20±0.01 b | 0.28±0.01 a | 0.29±0.02 a | 0.30±0.01 a | <0.001 | 0.33 | |
叶生物量占比leaf mass ratio | 0.19±0.02 c | 0.24±0.01 ab | 0.26±0.01 a | 0.21±0.00 bc | 0.006 | 0.28 | |
地上生物量占比aboveground mass ratio | 0.43±0.02 c | 0.58±0.01 ab | 0.61±0.01 a | 0.56±0.01 b | 0.003 | 0.29 | |
根冠比root shoot ratio | 3.14±0.30 a | 1.78±0.13 bc | 1.50±0.03 c | 2.13±0.04 b | 0.001 | 0.52 | |
平均mean | 0.34 | ||||||
光合生理 photosynthetic characteristics | AQY | 0.06±0.01 c | 0.09±0.01 b | 0.11±0.00 a | — | 0.001 | 0.45 |
Rd/(μmol·m-2·s-1) | 0.82±0.04 b | 0.87±0.03 ab | 0.95±0.00 a | — | 0.065 | 0.14 | |
Pn,max/(μmol·m-2·s-1) | 7.55±0.03 a | 3.46±0.01 c | 3.57±0.00 b | — | <0.001 | 0.54 | |
Lcp/ (μmol·m-2·s-1) | 12.87±1.02 a | 10.26±0.93 ab | 8.40±0.00 b | — | 0.021 | 0.35 | |
Lsp/ (μmol·m-2·s-1) | 380.00±61.12 a | 100.78±1.62 b | 117.43±9.64 b | — | 0.002 | 0.73 | |
Pn/ (μmol·m-2·s-1) | 6.19±0.17 a | 1.29±0.01 b | 0.53±0.01 b | — | 0.001 | 0.91 | |
Gs/ (mol·m-2·s-1) | 0.10±0.01 a | 0.03±0.00 b | 0.01±0.00 b | — | 0.001 | 0.90 | |
平均mean | 0.57 |
[1] |
韩有志, 王政权, 谷加存. 林分光照空间异质性对水曲柳更新的影响[J]. 植物生态学报, 2004, 28(4): 468-475.
doi: 10.17521/cjpe.2004.0064 |
HAN Y Z, WANG Z Q, GU J C. The effects of spatial heterogeneity of understorey light availability on regeneration of Manchurian ash[J]. Chin J Plant Ecol, 2004, 28(4): 468-475. DOI: 10.17521/cjpe.2004.0064.
doi: 10.17521/cjpe.2004.0064 |
|
[2] | 罗光宇, 陈超, 李月灵, 等. 光照强度对濒危植物长序榆光合特性的影响[J]. 生态学杂志, 2021, 40(4): 980-988. |
LUO G Y, CHEN C, LI Y L, et al. Effects of light intensities on the photosynthetic characteristics of Ulmus elongata[J]. Chin J Ecol, 2021, 40(4): 980-988. DOI: 10.13292/j.1000-4890.202104.013.
doi: 10.13292/j.1000-4890.202104.013 |
|
[3] |
ZHANG M, ZHU J J, LI M C, et al. Different light acclimation strategies of two coexisting tree species seedlings in a temperate secondary forest along five natural light levels[J]. For Ecol Manag, 2013, 306: 234-242. DOI: 10.1016/j.foreco.2013.06.031.
doi: 10.1016/j.foreco.2013.06.031 |
[4] |
WANG A Y, HAO G Y, GUO J J, et al. Differentiation in leaf physiological traits related to shade and drought tolerance underlies contrasting adaptations of two Cyclobalanopsis (Fagaceae) species at the seedling stage[J]. Forests, 2020, 11(8): 844. DOI: 10.3390/f11080844.
doi: 10.3390/f11080844 |
[5] | 赵康宁, 刘丹丹. 植物的耐阴性评价[J]. 南华大学学报(自然科学版), 2020, 34(3):51-59. |
ZHAO K N, LIU D D. Assessment of plant shade tolerance[J]. J Univ South China (Sci Technol), 2020, 34(3): 51-59. DOI: 10.19431/j.cnki.1673-0062.2020.03.008.
doi: 10.19431/j.cnki.1673-0062.2020.03.008 |
|
[6] | 陈圣宾, 宋爱琴, 李振基. 森林幼苗更新对光环境异质性的响应研究进展[J]. 应用生态学报, 2005, 16(2): 365-370. |
CHEN S B, SONG A Q, LI Z J. Research advance in response of forest seedling regeneration to light environmental heterogeneity[J]. Chin J Appl Ecol, 2005, 16(2): 365-370. DOI: 10.13287/j.1001-9332.2005.0449.
doi: 10.13287/j.1001-9332.2005.0449 |
|
[7] | 杨莹, 王传华, 刘艳红. 光照对鄂东南2种落叶阔叶树种幼苗生长、光合特性和生物量分配的影响[J]. 生态学报, 2010, 30(22): 6082-6090. |
YANG Y, WANG C H, LIU Y H. The effect of low irradiance on growth, photosynthetic characteristics, and biomass allocation in two deciduous broad-leaved tree seedlings in southeast of Hubei Province[J]. Acta Ecol Sin, 2010, 30(22): 6082-6090. | |
[8] |
殷东生, 沈海龙. 森林植物耐荫性及其形态和生理适应性研究进展[J]. 应用生态学报, 2016, 27(8): 2687-2698.
doi: 10.13287/j.1001-9332.201608.018 |
YIN D S, SHEN H L. Shade tolerance and the adaptability of forest plants in morphology and physiology: a review[J]. Chin J Appl Ecol, 2016, 27(8): 2687-2698. DOI: 10.13287/j.1001-9332.201608.018.
doi: 10.13287/j.1001-9332.201608.018 |
|
[9] |
SCOFFONI C, KUNKLE J, PASQUETKOK J, et al. Light-induced plasticity in leaf hydraulics, venation, anatomy, and gas exchange in ecologically diverse Hawaiian lobeliads[J]. New Phytol, 2015, 207(1): 43-58. DOI: 10.1111/nph.13346.
doi: 10.1111/nph.13346 pmid: 25858142 |
[10] | 刘青青, 马祥庆, 黄智军, 等. 光强对杉木幼苗形态特征和叶片非结构性碳含量的影响[J]. 生态学报, 2019, 39(12): 4455-4462. |
LIU Q Q, MA X Q, HUANG Z J, et al. Effects of light intensity on the morphology characteristics and leaf non-structural carbohydrate content of Chinese fir seedlings[J]. Acta Ecol Sin, 2019, 39(12): 4455-4462. DOI: 10.5846/stxb201805071017.
doi: 10.5846/stxb201805071017 |
|
[11] |
SÁNCHEZ-GÓMEZ D, VALLADARES F, ZAVALA A M. Functional traits and plasticity in response to light in seedlings of four Iberian forest tree species[J]. Tree Physiol, 2006, 26(11): 1425-1433. DOI: 10.1093/treephys/26.11.1425.
doi: 10.1093/treephys/26.11.1425 |
[12] |
PUGLIELLI G, LAANISTO L, POORTER H, et al. Global patterns of biomass allocation in woody species with different tolerance of shade and drought: evidence for multiple strategies[J]. New Phytol, 2021, 229(1): 308-322. DOI: 10.1111/nph.16879.
doi: 10.1111/nph.16879 |
[13] | 张云, 夏国华, 马凯, 等. 遮阴对堇叶紫金牛光合特性和叶绿素荧光参数的影响[J]. 应用生态学报, 2014, 25(7): 1940-1948. |
ZHANG Y, XIA G H, MA K, et al. Effects of shade on photosynthetic characteristics and chlorophyll fluorescence of Ardisia violacea[J]. Chin J Appl Ecol, 2014, 25(7): 1940-1948. DOI: 10.13287/j.1001-9332.20140425.001.
doi: 10.13287/j.1001-9332.20140425.001 |
|
[14] |
唐星林, 姜姜, 金洪平, 等. 遮阴对闽楠叶绿素含量和光合特性的影响[J]. 应用生态学报, 2019, 30(9): 2941-2948.
doi: 10.13287/j.1001-9332.201909.002 |
TANG X L, JIANG J, JIN H P, et al. Effects of shading on chlorophyll content and photosynthetic characteristics in leaves of Phoebe bournei[J]. Chin J Appl Ecol, 2019, 30(9): 2941-2948. DOI: 10.13287/j.1001-9332.201909.002.
doi: 10.13287/j.1001-9332.201909.002 |
|
[15] |
SCHOONMAKER A L, HACKE U G, LANDHUSSER S M, et al. Hydraulic acclimation to shading in boreal conifers of varying shade tolerance[J]. Plant Cell Environ, 2010, 33(3): 382-393. DOI: 10.1111/j.1365-3040.2009.02088.x.
doi: 10.1111/j.1365-3040.2009.02088.x |
[16] |
殷笑寒, 郝广友. 长白山阔叶树种木质部环孔和散孔结构特征的分化导致其水力学性状的显著差异[J]. 应用生态学报, 2018, 29(2): 352-360.
doi: 10.13287/j.1001-9332.201802.035 |
YIN X H, HAO G Y. Divergence between ring- and diffuse-porous wood types in broadleaf trees of Changbai Mountains results in sustantial differences in hydraulic traits[J]. Chin J Appl Ecol, 2018, 29(2): 352-360. DOI: 10.13287/j.1001-9332.201802.035.
doi: 10.13287/j.1001-9332.201802.035 |
|
[17] |
DEGUCHI R, KOYAMA K. Photosynthetic and morphological acclimation to high and low light environments in Petasites japonicus subsp. giganteus[J]. Forests, 2020, 11(12): 1365. DOI: 10.3390/f11121365.
doi: 10.3390/f11121365 |
[18] |
PLAVCOVÁ L, HACKE U G, Sperry J S. Linking irradiance-induced changes in pit membrane ultrastructure with xylem vulnerability to cavitation[J]. Plant Cell Environ, 2010, 34(3): 501-513. DOI: 10.1111/j.1365-3040.2010.02258.x.
doi: 10.1111/j.1365-3040.2010.02258.x |
[19] HACKE U G. Irradiance-induced changes in hydraulic architecture[J]. Botany, 2013, 92(6): 437-442. DOI: 10.1139/cjb-2013-0200.
doi: 10.1139/cjb-2013-0200 |
|
[20] |
WANG J H, CAI Y F, LI S F, et al. Photosynthetic acclimation of rhododendrons to light intensity in relation to leaf water-related traits[J]. Plant Ecol, 2020, 221(5): 1-14. DOI: 10.1007/s11258-020-01019-y.
doi: 10.1007/s11258-020-01019-y |
[21] |
HERNÁNDEZ E I, VILAGROSA A, LUIS V C, et al. Root hydraulic conductance, gas exchange and leaf water potential in seedlings of Pistacia lentiscus L. and Quercus suber L. grown under different fertilization and light regimes[J]. Environ Exp Bot, 2009, 67(1): 269-276. DOI: 10.1016/j.envexpbot.2009.07.004.
doi: 10.1016/j.envexpbot.2009.07.004 |
[22] | 代永欣, 王林, 王延书, 等. 摘叶造成的碳限制对刺槐碳素分配和水力学特性的影响[J]. 植物科学学报, 2017, 35(5): 750-758. |
DAI Y X, WANG L, WANG Y S, et al. Effects of defoliation-induced carbon limitation on carbon allocation and hydraulic architecture of Robinia pseudoacacia Linn. seedlings[J]. Plant Sci J, 2017, 35(5): 750-758. DOI: 10.11913/PSJ.2095-0837.2017.50750.
doi: 10.11913/PSJ.2095-0837.2017.50750 |
|
[23] |
BRODRIBB T J, BOWMAN D, NICHOS S, et al. Xylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit[J]. New Phytol, 2010, 188(2): 533-542. DOI: 10.1111/j.1469-8137.2010.03393.x.
doi: 10.1111/j.1469-8137.2010.03393.x pmid: 20673281 |
[24] |
SONG J, YANG D, NIU C Y, et al. Correlation between leaf size and hydraulic architecture in five compound-leaved tree species of a temperate forest in NE China[J]. For Ecol Manag, 2017, 418: 63-72. DOI: 10.1016/j.foreco.2017.08.005.
doi: 10.1016/j.foreco.2017.08.005 |
[25] |
ZHANG J L, CAO K F. Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates across dipterocarp species[J]. Funct Ecol, 2009, 23(4): 658-667. DOI: 10.1111/j.1365-2435.2009.01552.x.
doi: 10.1111/j.1365-2435.2009.01552.x |
[26] |
HAO G Y, WANG A Y, SACK L, et al. Is hemiepiphytism an adaptation to high irradiance? Testing seedling responses to light levels and drought in hemiepiphytic and non-hemiepiphytic Ficus[J]. Physiol Plant, 2013, 148(1): 74-86. DOI: 10.1111/j.1399-3054.2012.01694.x.
doi: 10.1111/j.1399-3054.2012.01694.x |
[27] |
SELLIN A, KUPPER P. Effects of light availability versus hydraulic constraints on stomatal responses within a crown of silver birch[J]. Oecologia, 2005, 142(3): 388-397. DOI: 10.1007/s00442-004-1748-3.
doi: 10.1007/s00442-004-1748-3 pmid: 15517405 |
[28] |
SACK L, HOLBROOK N M. Leaf hydraulics[J]. Annu Rev Plant Biol, 2006, 57(1): 361-381. DOI: 10.1146/annurev.arplant.56.032604.144141.
doi: 10.1146/annurev.arplant.56.032604.144141 |
[29] | 孙晓程, 张亚洲, 范晓男. 长白山阔叶红松林的现状及经营管理[J]. 吉林师范大学学报(自然科学版), 2008, 29(2):105-107. |
SUN X C, ZHANG Y Z, FAN X N. The status and operating management of broad leaved Pinus koariensis forests in Changbai Mountains[J]. Jilin Nor Univ J (Nat Sci Ed), 2008, 29(2): 105-107. DOI: 10.16862/j.cnki.issn1674-3873.2008.02.040.
doi: 10.16862/j.cnki.issn1674-3873.2008.02.040 |
|
[30] | 孙一荣, 朱教君, 于立忠, 等. 不同光强下核桃楸,水曲柳和黄菠萝的光合生理特征[J]. 林业科学, 2009, 45(9): 29-35. |
SUN Y R, ZHU J J, YU L Z, et al. Photosynthetic characteristics of Juglans mandshurica, Fraxinus mandshurica and Phellodendron amurense under different light regimes[J]. Sci Silvae Sin, 2009, 45(9): 29-35. DOI: 10.3321/j.issn:1001-7488.2009.09.006.
doi: 10.3321/j.issn:1001-7488.2009.09.006 |
|
[31] | 郝占庆, 代力民, 贺红士, 等. 气候变暖对长白山主要树种的潜在影响[J]. 应用生态学报, 2001, 12(5): 653-658. |
HAO Z Q, DAI L M, HE H S, et al. Potential response of major tree species to climate warming in Changbai Mountains, northeast China[J]. Chin J Appl Ecol, 2001, 12(5): 653-658. DOI: 10.1007/s11769-001-0027-z.
doi: 10.1007/s11769-001-0027-z |
|
[32] | 王淼, 刘亚琴, 郝占庆, 等. 长白山阔叶红松林生态系统的呼吸速率[J]. 应用生态学报, 2006, 17(10): 1789-1795. |
WANG M, LIU Y Q, HAO Z Q, et al. Respiration rate of broad leaved Korean pine forest ecosystem in Changbai Mountains[J]. Chin J Appl Ecol, 2006, 17(10): 1789-1795. | |
[33] | 代力民, 陈高, 邓红兵, 等. 受干扰长白山阔叶红松林林分结构组成特征及健康距离评估[J]. 应用生态学报, 2004, 15(10): 1750-1754. |
DAI L M, CHEN G, DENG H B et al. Structure characteristics and health distance assessment of various disturbed communities of Korean pine and broadleaved mixed forest in Changbai Mountains[J]. Chin J Appl Ecol, 2004, 15(10): 1750-1754. | |
[34] |
TYREE M T, SINCLAIR B, LU P, et al. Whole shoot hydraulic resistance in Quercus species measured with a new high-pressure flowmeter[J]. Ann For Sci 1993, 50(5): 417-423. DOI: 10.1051/forest:19930501.
doi: 10.1051/forest:19930501 |
[35] |
WANG A Y, WANG M, YANG D, et al. Responses of hydraulics at the whole-plant level to simulated nitrogen deposition of different levels in Fraxinus mandshurica[J]. Tree physiol, 2016, 36(8): 1045-1055. DOI: 10.1093/treephys/tpw048.
doi: 10.1093/treephys/tpw048 |
[36] |
TSUDA M, TYREE M T. Whole-plant hydraulic resistance and vulnerability segmentation in Acer saccharinum[J]. Tree Physiol. 1997, 17(6): 351-357. DOI: 10.1093/treephys/17.6.351.
doi: 10.1093/treephys/17.6.351 |
[37] |
VALLADARES F, WRIGHT S J, LASSO E, et al. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest[J]. Ecology, 2000, 81(7): 1925-1936. DOI: 10.2307/177282.
doi: 10.2307/177282 |
[38] | MEDIAVILLA S,ESCUDERO A. Differences in biomass allocation patterns between saplings of two co-occurring Mediterranean oaks as reflecting different strategies in the use of light and water[J]. Eur J For Res, 2010, 129(4): 697-706. DOI: 10.1007/s10342-010-0375-2. |
[39] |
RODRÍGUEZ-GARCÍA E, BRAVO F. Plasticity in Pinus pinaster populations of diverse origins: comparative seedling responses to light and nitrogen availability[J]. For Ecol Manag, 2013, 307(1): 196-205. DOI: 10.1016/j.foreco.2013.06.046.
doi: 10.1016/j.foreco.2013.06.046 |
[40] | 成向荣, 文黎, 海静静, 等. 针叶茴香对变化光环境的表型可塑性[J]. 生态学报, 2019, 9(6): 1935-1944. |
CHEN X R, WEN L, HAI J J, et al. Phenotypic plasticity of Illicium lanceolatum in response to varied light environments[J]. Acta Ecol Sin, 2019, 39(6): 1935-1944. DOI: 10.5846/stxb201809192044. | |
[41] |
WANG D, HUANG X L, CHEN J Z, et al. Plasticity of leaf traits of Juglans regia L.f. fluodianense Liu et Xu seedlings under different light conditions in Karst habitats[J]. Forests, 2021, 12(1): 81. DOI: 10.3390/f12010081.
doi: 10.3390/f12010081 |
[42] |
BARIGHT S, THARWAT I, AURORE B, et al. Irradiance-induced plasticity in the hydraulic properties of saplings of different temperate broad-leaved forest tree species[J]. Tree Physiol, 2006, 26(12): 1505-1516. DOI: 10.1093/treephys/26.12.1505.
doi: 10.1093/treephys/26.12.1505 pmid: 17169890 |
[43] |
DOMINGO S K, JAVIER P, JAUME F, et al. Coping with low light under high atmospheric dryness: shade acclimation in a Mediterranean conifer (Abies pinsapo Boiss.)[J]. Tree Physiol, 2014, 34(12): 1321-1333. DOI: 10.1093/treephys/tpu095.
doi: 10.1093/treephys/tpu095 |
[44] | 杨晓青, 张岁岐, 刘小芳, 等. 不同抗旱型冬小麦品种根系水力导度与解剖结构的关系[J]. 西北农林科技大学学报(自然科学版), 2007, 35(8): 160-164. |
YANG X Q, ZHANG S Q, LIU X F, et al. Relationship between roots hydraulic conductivity and root anatomy of winter wheat (T. aestivum)[J]. J Northwest A F Univ (Nat Scie Ed), 2007, 35(8): 160-164. DOI: 10.13207/j.cnki.jnwafu.2007.08.017.
doi: 10.13207/j.cnki.jnwafu.2007.08.017. |
|
[45] |
TRUBAT R, CORTINA J, VILAGROSA A. Root architecture and hydraulic conductance in nutrient deprived Pistacia lentiscus L. seedlings[J]. Oecologia, 2012, 170(4): 899-908. DOI: 10.1007/s00442-012-2380-2.
doi: 10.1007/s00442-012-2380-2 |
[46] |
SPERRY J S, HACKE U G, WHEELER J K. Comparative analysis of end wall resistivity in xylem conduits[J]. Plant Cell Environ, 2010, 28(4): 456-465. DOI: 10.1111/j.1365-3040.2005.01287.x.
doi: 10.1111/j.1365-3040.2005.01287.x |
[47] |
POORTER L, MCDONAALD I, ALARCÓN A, et al. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species[J]. New Phytol, 2010, 185(2): 481-492. DOI: 10.1111/j.1469-8137.2009.03092.x.
doi: 10.1111/j.1469-8137.2009.03092.x pmid: 19925555 |
[48] |
NIU C Y, MEINZER F C, HAO G Y, et al. Divergence in strategies for coping with winter embolism among co-occurring temperate tree species: the role of positive xylem pressure, wood type and tree stature[J]. Funct Ecol, 2017, 31(8): 1550-1560. DOI: 10.1111/1365-2435.12868.
doi: 10.1111/1365-2435.12868 |
[49] |
ZIMMERMANN M H. Xylem structure and the ascent of sap[J]. Biol Plant, 1984, 26(3): 165. DOI: 10.1007/BF02895041.
doi: 10.1007/BF02895041 |
[50] |
NAGASUGA K, KUBOTA F. Change in hydraulic resistance and shoot morphology of napier grass (Pennisetum purpureum Schumach.)under shaded condition[J]. Plant Pro Sci, 2006, 9(4): 364-368. DOI: 10.1626/pps.9.364.
doi: 10.1626/pps.9.364 |
[51] |
GUYOT G, SCOFFONI C, SACK L. Combined impacts of irradiance and dehydration on leaf hydraulic conductance: insights into vulnerability and stomatal control[J]. Plant Cell Enviro, 2012, 35(5): 857-871. DOI: 10.1111/j.1365-3040.2011.02458.x.
doi: 10.1111/j.1365-3040.2011.02458.x |
[52] | 王琬茹, 刘盛, 田佳歆, 等. 郁闭度对长白落叶松人工林下更新幼树生长的影响[J]. 北华大学学报(自然科学版), 2020, 21(6):724-729. |
WANG W R, LIU S, TIAN J X, et al. Effect of canopy density on regeneration growth of young treesunder Larix olgensis plantation[J]. J Beihua Uni (Nat Sci), 2020, 21(6): 724-729. DOI: 10.11713/j.issn.1009-4822.2020.06.005.
doi: 10.11713/j.issn.1009-4822.2020.06.005 |
|
[53] | 郭韦韦, 张青, 亢新刚, 等. 长白山云冷杉林不同演替阶段树种组成及林下更新研究[J]. 南京林业大学学报(自然科学版), 2017, 41(1):109-116. |
GUO W W, ZHANG Q, KANG X G, et al. Species composition and characteristics of saplings for spruce-fir forest at different succession stages in Changbai Mountain[J]. J Nanjing For Univ (Nat Sci Ed), 2017, 41(1): 109-116. DOI: 10.3969/j.issn.1000-2006.2017.01.017.
doi: 10.3969/j.issn.1000-2006.2017.01.017 |
[1] | XU Xinlu, KONG Shuxin, LYU Zhuo, JIANG Shuaijun, ZHAO Wanqi, LIN Shuyan. The relationship of appearance, structure and photosynthetic characteristics of different leaf color phenotypes of Sasaella glabra ‘Albostriata’ [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 145-154. |
[2] | YE Yuyan, DING Fangjun, WU Peng, ZHOU Hua, LI Yuanyong, ZHOU Ting, CUI Yingchun. Effects of hydraulics and anatomical structure on sap flow of nine tree species in Karst primary forest [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 111-120. |
[3] | DU Xin, DONG Xue, GU Huiyan, CHEN Xiangwei. Diffuse radiation environment of regeneration seedlings and saplings under a broadleaved-Korean pine forest [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 145-156. |
[4] | LI Ximei, ZHAO Junjing, HUI Yi, HUANG Xin, GAO Chunyu, NIU Yaxuan, LIAO Xiaoyu, YU Chenyi. A study on photosynthetic characteristics and influencing factors of four kinds of garden trees in Zhengzhou [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 105-112. |
[5] | LI Panting, DU Manyi, WANG Yue, PEI Shunxiang, XIN Xuebing. The growth and photosynthetic characteristics of Acer truncatum seedlings in response to soil water and fertilizer coupling [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 113-122. |
[6] | WU Changfeng, GUO Jing, WANG Guibin. Morphological and physiological responses of male and female Ginkgo biloba to temperature changes [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 150-158. |
[7] | MA Chong, LU Hui, LI Yunmao, CAO Bing, ZHU Jinzhong, KANG Yandong. Effects of elevated CO2 concentration and nitrogen addition in simulated atmosphere on growth and photosynthetic characteristics of Lycium barbarum [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 209-218. |
[8] | ZHANG Rui, ZHOU Zhenghu, WANG Chuankuan, JIN Ying. Xylem anatomical and hydraulic traits of trees with different wood properties in a temperate forest in northeast China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 229-236. |
[9] | YANG Hao, LIU Chao, ZHUANG Jiayao, ZHANG Shutong, ZHANG Wentao, MAO Guohao. Effects of different carrier bacterial fertilizers on growth, photosynthetic characteristics and soil nutrients of Amorpha fruticosa [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 81-89. |
[10] | WANG Gaiping, ZHANG Lei, CAO Fuliang, DING Yanpeng, ZHAO Qun, ZHAO Huiqin, WANG Zheng. Effect of red and blue light quality on growth physiological and flavonoid content of Ginkgo biloba seedlings [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 105-112. |
[11] | ZHAO Xiaolong, SHEN Jiayi, LIU Tao, WU Jiasheng, HU Yuanyuan. Seasonal variations in photosynthetic efficiency and antioxidant characteristics of the current and one year-old leaves in Torreya grandis‘Merrillii’ [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 45-50. |
[12] | TIAN Mengyang, ZHU Shulin, DOU Quanqin, JI Yanhong. The effects of intercropping of Carya illinoinensis and Camellia sinensis ‘Anjibaicha’ on photosynthetic characteristics of C. sinensis tree during rapid growth period [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 86-96. |
[13] | WEI Jing, TAN Xing, WANG Changsheng, YAN Rui, LI Linke, NING Yue, LIU Yun. Comparison of growth and photosynthetic characteristics of introduced Acer rubrum on two purple soils [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 97-105. |
[14] | LIANG Wenchao, BU Xing, LUO Siqian, XIE Yinfeng, HU Jialing, ZHANG Wangxiang. Effects of fertilization on the leaf growth and photosynthetic characteristics of Chaenomeles speciosa ‘Changshouguan’ after processing of warming in the post floral stage [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 114-120. |
[15] | JIA Ruirui, ZHU Yanyan, YANG Xiulian, FU Yu, YUE Yuanzheng, WANG Lianggui. Effects of different rootstocks on growth and photosynthetic characteristics of grafted seedlings of Catalpa bungei [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 97-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||