JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (1): 199-208.doi: 10.12302/j.issn.1000-2006.202103050
Previous Articles Next Articles
WANG Yang(), WANG Wei, JIANG Jing(
), GU Chenrui, YANG Yunli
Received:
2021-03-30
Accepted:
2021-08-31
Online:
2023-01-30
Published:
2023-02-01
Contact:
JIANG Jing
E-mail:1149493103@qq.com;jiangjing1960@126.com
CLC Number:
WANG Yang, WANG Wei, JIANG Jing, GU Chenrui, YANG Yunli. Diversity of microbial community in rhizosphere of genetically modified Populus simonii × P. nigra[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 199-208.
Table 1
Alpha diversity of bacteria and fungi in rhizosphere soil of Populus simonii × P.nigra"
种类 type | 样品 sample | 观察物种数 observed species | Chao1指数 | Shannon指数 | Simpson指数 | 覆盖度 coverage |
---|---|---|---|---|---|---|
细菌 bacteria | 野生型WT | 3 279±154 a | 3 541.71±277.77 ab | 10.43±0.06 ab | 0.998 4±0.000 1 a | 0.979 50±0.004 94 a |
TaLEA | 3 365±257 a | 3 692.13±269.05 a | 10.46±0.09 a | 0.998 4±0.000 1 a | 0.976 58±0.003 44 a | |
betA | 3 074±73 ab | 3 404.13±44.67 ab | 10.25±0.03 b | 0.998 1±0.000 0 b | 0.977 55±0.000 16 a | |
WRKY70 | 2 726±44 b | 2 955.77±23.36 b | 10.03±0.06 c | 0.997 8±0.000 0 c | 0.982 56±0.000 55 a | |
真菌 fungi | 野生型WT | 512±4.00 a | 512.70±3.57 a | 5.09±0.01 a | 0.926 6±0.000 9 a | 0.999 93±0.000 01 a |
TaLEA | 367±26.00 b | 368.77±26.62 b | 4.08±0.04 b | 0.886 3±0.006 9 b | 0.999 89±0.000 03 a | |
betA | 402±18.00 b | 403.75±18.45 b | 4.11±0.10 b | 0.846 0±0.006 8 c | 0.999 89±0.000 02 a | |
WRKY70 | 375±17.00 b | 375.88±17.39 b | 4.08±0.06 b | 0.820 7±0.008 6 d | 0.999 96±0.000 02 a |
[1] | 田颖川, 李太元, 莽克强, 等. 抗虫转基因欧洲黑杨的培育[J]. 生物工程学报, 1993, 9(4):291-297,395. |
TIAN Y C, LI T Y, MANG K Q, et al. Insect tolerance of transgenic Populus nigra plants transformed with Bacillus thuringiensis toxin gene[J]. Chin J Biotechnol, 1993, 9(4):291-297,395.DOI:10.13345/j.cjb.1993.04.001.
doi: 10.13345/j.cjb.1993.04.001 |
|
[2] | 卢孟柱, 胡建军. 我国转基因杨树的研究及应用现状[J]. 林业科技开发, 2006, 20(6):1-4. |
LU M Z, HU J J. Research and application status of transgenic poplar in China[J]. J For Eng, 2006, 20(6):1-4. | |
[3] |
ZHAO H, JIANG J, LI K L, et al. Populus simonii × Populus nigra WRKY70 is involved in salt stress and leaf blight disease responses[J]. Tree Physiol, 2017, 37(6):827-844.DOI:10.1093/treephys/tpx020.
doi: 10.1093/treephys/tpx020 |
[4] | 吕威, 卢楠, 侯荣轩, 等. 12年生转基因毛白杨外源基因转移及其对土壤微生物的影响[J]. 东北林业大学学报, 2018, 46(9):1-6. |
LÜ W, LU N, HOU R X, et al. Exogenous gene transfer of 12 a transgenic Populus [(Populus tomentosa × P.bolleana)× P. tomentosa]and its effect on soil microbial quantity[J]. J Northeast For Univ, 2018, 46(9):1-6.DOI:10.13759/j.cnki.dlxb.2018.09.001.
doi: 10.13759/j.cnki.dlxb.2018.09.001. |
|
[5] | 孙伟博, 魏朝琼, 马晓星, 等. 3类转基因‘南林895’杨田间试验的安全性评估[J]. 林业科学, 2020, 56(10):53-62. |
SUN W B, WEI Z Q, MA X X, et al. Safety assessment of a field trial of three types of transgenic poplar ‘Nanlin895’[J]. Sci Silvae Sin, 2020, 56(10):53-62.DOI:10.11707/j.1001-7488.20201006.
doi: 10.11707/j.1001-7488.20201006 |
|
[6] | 胡建军, 张蕴哲, 卢孟柱, 等. 欧洲黑杨转基因稳定性及对土壤微生物的影响[J]. 林业科学, 2004, 40(5):105-109. |
HU J J, ZHANG Y Z, LU M Z, et al. Transgene stability of transgenic Populus nigra and its effects on soil microorganism[J]. Sci Silvae Sin, 2004, 40(5):105-109.DOI:10.3321/j.issn:1001-7488.2004.05.017.
doi: 10.3321/j.issn:1001-7488.2004.05.017 |
|
[7] | 马晓星, 孙伟博, 魏辉, 等. 转AtSnRK2C基因杨树田间试验及生物安全性分析[J]. 分子植物育种, 2019, 17(11):3570-3578. |
MA X X, SUN W B, WEI H, et al. Field trials and biosafety analysis of transgenic poplar with AtSnRK2C gene[J]. Mol Plant Breed, 2019, 17(11):3570-3578.DOI:10.13271/j.mpb.017.003570.
doi: 10.13271/j.mpb.017.003570 |
|
[8] | 吕威, 孙宇涵, 张华新, 等. 转基因三倍体毛白杨花粉活力及枯落物外源基因检测[J]. 北京林业大学学报, 2019, 41(7):91-100. |
LÜ W, SUN Y H, ZHANG H X, et al. Pollen vigor and detection of exogenous genes of litter for transgenic triploid Populus tomentosa[J]. J Beijing For Univ, 2019, 41(7):91-100.DOI:10.13332/j.1000-1522.20190105.
doi: 10.13332/j.1000-1522.20190105 |
|
[9] | 汤沂, 向东, 裘芳, 等. 转基因植物的环境及食品安全性研究[J]. 现代食品, 2019(15):126-127,130. |
TANG Y, XIANG D, QIU F, et al. Study on the environment and food safety of transgenic plants[J]. Mod Food, 2019(15):126-127, 130.DOI:10.16736/j.cnki.cn41-1434/ts.2019.15.040.
doi: 10.16736/j.cnki.cn41-1434/ts.2019.15.040 |
|
[10] | 陈静怡, 刘瑞华, 王丽丽, 等. 磷高效转基因水稻连续种植对土壤微生物功能多样性的影响[J]. 天津农学院学报, 2019, 26(2):1-7. |
CHEN J Y, LIU R H, WANG L L, et al. Effects of continuous planting of phosphorus-efficient transgenic rice on soil microbial functional diversity[J]. J Tianjin Agric Univ, 2019, 26(2):1-7.DOI:10.19640/j.cnki.jtau.2019.02.001.
doi: 10.19640/j.cnki.jtau.2019.02.001 |
|
[11] |
SHEN R F, CAI H, GONG W H. Transgenic Bt cotton has no apparent effect on enzymatic activities or functional diversity of microbial communities in rhizosphere soil[J]. Plant Soil, 2006, 285(1):149-159.DOI:10.1007/s11104-006-9000-z.
doi: 10.1007/s11104-006-9000-z |
[12] |
ICOZ I, SAXENA D, ANDOW D A, et al. Microbial populations and enzyme activities in soil in situ under transgenic corn expres-sing cry proteins from Bacillus thuringiensis[J]. J Environ Qual, 2008, 37(2):647-662.DOI:10.2134/jeq2007.0352.
doi: 10.2134/jeq2007.0352 |
[13] |
GUO Q, LU N, LUO Z J, et al. An assessment of the environmental impacts of transgenic triploid Populus tomentosa in field condition[J]. Forests, 2018, 9(8):482.DOI:10.3390/f9080482.
doi: 10.3390/f9080482 |
[14] |
FAN J M, DONG Y, YU X Y, et al. Assessment of environmental microbial effects of insect-resistant transgenic Populus × euramericana cv. 74/76 based on high-throughput sequencing[J]. Acta Physiol Plant, 2020, 42(11):167.DOI:10.1007/s11738-020-03148-3.
doi: 10.1007/s11738-020-03148-3 |
[15] | 朱文旭, 丁昌俊, 张伟溪, 等. 8年生转基因库安托杨外源基因转移及对土壤微生物数量影响的检测[J]. 林业科学研究, 2017, 30(2):349-353. |
ZHU W X, DING C J, ZHANG W X, et al. Exogenous gene transformation of 8-year-old multi-gene transgenic Populus × euramericana‘Guariento’and its influence on soil microbial quantity[J]. For Res, 2017, 30(2):349-353.DOI:10.13275/j.cnki.lykxyj.2017.02.023.
doi: 10.13275/j.cnki.lykxyj.2017.02.023 |
|
[16] | 周培军, 李玲玲, 李红岩, 等. 转Bt基因‘南林895’杨时空表达及生物安全分析[J]. 分子植物育种, 2022, 20(5):1568-1580. |
ZHOU P J, LI L L, LI H Y, et al. Spatio-temporal expression and biosafety analysis of transgenic ‘Nanlin895’ poplar with Bt[J]. Mol Plant Breed, 2022, 20(5):1568-1580.DOI:10.13271/j.mpb.020.001568.
doi: 10.13271/j.mpb.020.001568 |
|
[17] | 侯英杰, 苏晓华, 焦如珍, 等. 转基因银腺杂种杨对土壤微生物的影响[J]. 林业科学, 2009, 45(5):148-152. |
HOU Y J, SU X H, JIAO R Z, et al. Effects of transgenic Populus alba × P. glandulosa on soil microorganism[J]. Sci Silvae Sin, 2009, 45(5):148-152.DOI:10.3321/j.issn:1001-7488.2009.05.023.
doi: 10.3321/j.issn:1001-7488.2009.05.023 |
|
[18] | 吕秀华. 转基因银中杨ABJ系列对土壤微生物类群的影响[J]. 基因组学与应用生物学, 2017, 36(5):1991-1996. |
LV X H. The impact of transgenic poplar(ABJ series) on soil microorganism group[J]. Genom Appl Biol, 2017, 36(5):1991-1996.DOI:10.13417/j.gab.036.001991.
doi: 10.13417/j.gab.036.001991. |
|
[19] | 吕秀华. 转基因银中杨对根际土壤微生物的影响[J]. 基因组学与应用生物学, 2018, 37(5):1965-1970. |
LV X H. The impact of transgenic poplar on soil microorganism group[J]. Genom Appl Biol, 2018, 37(5):1965-1970.DOI:10.13417/j.gab.037.001965.
doi: 10.13417/j.gab.037.001965 |
|
[20] | 马晓星, 孙伟博, 魏辉, 等. 转PeTLP基因‘南林895’杨对土壤微生物的影响及外源基因分子检测[J]. 浙江林业科技, 2018, 38(4):28-37. |
MA X X, SUN W B, WEI H, et al. Effect of transgenic Populus deltoides × P. euramericanna cv.Nanlin 895 with PeTLP on soil microbes and molecular analysis on exogenous genes[J]. J Zhejiang For Sci Technol, 2018, 38(4):28-37.DOI:10.3969/j.issn.1001-3776.2018.04.005.
doi: 10.3969/j.issn.1001-3776.2018.04.005 |
|
[21] | 杨传平, 刘桂丰, 梁宏伟, 张慧. 耐盐基因Bet-A转化小黑杨的研究[J]. 林业科学, 2001, 37(6):34-38. |
YANG C P, LIU G F, LIANG H W, et al. Study on the transformation of Populus simonii × P. nigra with salt resistance gene Bet-A[J]. Sci Silvae Sin, 2001, 37(6):34-38.DOI:10.11707/j.1001-7488.20010607.
doi: 10.11707/j.1001-7488.20010607 |
|
[22] |
GAO W D, BAI S, LI Q M, et al. Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra)[J]. PLoS One, 2013, 8(6):e67462.DOI:10.1371/journal.pone.0067462.
doi: 10.1371/journal.pone.0067462 |
[23] | 杜金友, 陈晓阳, 李伟, 等. 林木抗旱的渗透调节及其基因工程研究进展[J]. 西北植物学报, 2004, 24(6):1154-1159. |
DU J Y, CHEN X Y, LI W, et al. Progress of osmoregulation mechanism and genetic engineering under drought stress in forest trees[J]. Acta Bot Boreali Occidentalia Sin, 2004, 24(6):1154-1159.DOI:10.3321/j.issn:1000-4025.2004.06.036.
doi: 10.3321/j.issn:1000-4025.2004.06.036 |
|
[24] | 刘桂丰, 杨传平, 蔡智军, 等. 转bet A基因小黑杨的耐盐性分析及优良转基因株系的选择[J]. 林业科学, 2006, 42(7):33-36. |
LIU G F, YANG C P, CAI Z J, et al. Salt Tolerance of bet A transgenic Populus simonii × P.nigra and selection for superior transgenic plants[J]. Sci Silvae Sin, 2006, 42(7):33-36.DOI:10.3321/j.issn:1001-7488.2006.07.006.
doi: 10.3321/j.issn:1001-7488.2006.07.006 |
|
[25] | 孙延爽, 邢宝月, 杨光, 等. NaHCO3胁迫对转TaLEA基因山新杨生长及光合、叶绿素荧光特性的影响[J]. 北京林业大学学报, 2017, 39(10):33-41. |
SUN Y S, XING B Y, YANG G, et al. Effects of NaHCO3 stress on growth,photosynthesis and chlorophyll fluorescence characteristics in Populus davidiana × P. bolleana overexpressed TaLEA[J]. J Beijing For Univ, 2017, 39(10):33-41.DOI:10.13332/j.1000-1522.20170099.
doi: 10.13332/j.1000-1522.20170099 |
|
[26] |
IWANG Y, YANG Y L, WANG F S, et al. Growth adaptability and foreign gene stability of TaLEA transgenic Populus simonii × nigra[J]. Ann For Sci, 2021, 78(2):42.DOI:10.1007/s13595-021-01038-3.
doi: 10.1007/s13595-021-01038-3 |
[27] | 李志新, 赵曦阳, 杨成君, 等. 转TaLEA基因小黑杨株系变异及生长稳定性分析[J]. 北京林业大学学报, 2013, 35(2):57-62. |
LI Z X, ZHAO X Y, YANG C J, et al. Variation and growth adaptability analysis of transgenic Populus simonii × P.nigra lines carrying TaLEA gene[J]. J Beijing For Univ, 2013, 35(2):57-62.DOI:10.13332/j.1000-1522.2013.02.024.
doi: 10.13332/j.1000-1522.2013.02.024 |
|
[28] | 葛梦妍, 顾宸瑞, 陈坤, 等. 转betA基因小黑杨生长及适应性[J]. 东北林业大学学报, 2021, 49(4):12-16,23. |
GE M Y, GU C R, CHEN K, et al. Growth and adaptability of transgenic Populus simonii × P. nigra with betA gene[J]. J Northeast For Univ, 2021, 49(4):12-16,23.DOI:10.13759/j.cnki.dlxb.2021.04.003.
doi: 10.13759/j.cnki.dlxb.2021.04.003 |
|
[29] |
CALLAHAN B J, MCMURDIE P J, ROSEN M J, et al. DADA2:high-resolution sample inference from Illumina amplicon data[J]. Nat Methods, 2016, 13(7):581-583.DOI:10.1038/nmeth.3869.
doi: 10.1038/nmeth.3869 |
[30] |
BARDGETT R D, FREEMAN C, OSTLE N J. Microbial contributions to climate change through carbon cycle feedbacks[J]. ISME J, 2008, 2(8):805-814.DOI:10.1038/ismej.2008.58.
doi: 10.1038/ismej.2008.58 pmid: 18615117 |
[31] | 徐征. 农业转基因生物对土壤生态系统功能影响的研究进展[J]. 中国农学通报, 2004, 20(4):47-50,72. |
XU Z. Studies on the effects influenced the furction of soil-ecosystem by transgrenies[J]. Chin Agric Sci Bull, 2004, 20(4):47-50,72.DOI:10.3969/j.issn.1000-6850.2004.04.017.
doi: 10.3969/j.issn.1000-6850.2004.04.017 |
|
[32] |
BAUMGARTE S, TEBBE C C. Field studies on the environmental fate of the Cry1Ab Bt-toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere[J]. Mol Ecol, 2005, 14(8):2539-2551.DOI:10.1111/j.1365-294X.2005.02592.x.
doi: 10.1111/j.1365-294X.2005.02592.x |
[33] |
LIU B, ZENG Q, YAN F M, et al. Effects of transgenic plants on soil microorganisms[J]. Plant Soil, 2005, 271(1):1-13.DOI:10.1007/s11104-004-1610-8.
doi: 10.1007/s11104-004-1610-8 |
[34] |
GYAMFI S, PFEIFER U, STIERSCHNEIDER M, et al. Effects of transgenic glufosinate-tolerant oilseed rape (Brassica napus) and the associated herbicide application on eubacterial and Pseudomonas communities in the rhizosphere[J]. FEMS Microbiol Ecol, 2002, 41(3):181-190.DOI:10.1016/S0168-6496(02)00290-8.
doi: 10.1016/S0168-6496(02)00290-8 |
[35] | 陈晓雯, 林胜, 尤民生, 等. 转基因水稻对土壤微生物群落结构及功能的影响[J]. 生物安全学报, 2011, 20(2):151-159. |
CHEN X W, LIN S, YOU M S, et al. Effects of transgenic rice on the structure and function of soil microbial communities[J]. J Biosaf, 2011, 20(2):151-159. | |
[36] |
MIAO Y, JOHNSON N W, GEDALANGA P B, et al. Response and recovery of microbial communities subjected to oxidative and biological treatments of 1,4-dioxane and co-contaminants[J]. Water Res, 2019, 149:74-85.DOI:10.1016/j.watres.2018.10.070.
doi: S0043-1354(18)30873-X pmid: 30419469 |
[37] | 赖宝春, 戴瑞卿, 吴振强, 等. 辣椒健康植株与患枯萎病植株根际土壤细菌群落多样性的比较研究[J]. 福建农业学报, 2019, 34(9):1073-1080. |
LAI B C, DAI R Q, WU Z Q, et al. Bacterial diversities in rhizosphere soils at sites of healthy and Fusarium wilt infected chili plants[J]. Fujian J Agric Sci, 2019, 34(9):1073-1080.DOI:10.19303/j.issn.1008-0384.2019.09.012.
doi: 10.19303/j.issn.1008-0384.2019.09.012 |
|
[38] | NGUYEN N L, TRAN B, PHAM H, et al. Illumina miseq-based sequencing analysis of bacterial community in Vietnamese ginseng cultivated soil in the Ngoc Linh Mountain,Vietnam[J]. TiEu Ban Tai Nguyen Sinh Vat, 2016:1274-1282. |
[39] |
NALIN R, SIMONET P, VOGEL T M, et al. Rhodanobacter lindaniclasticus Gen nov,sp.nov,a lindane-degrading bacterium[J]. Int J Syst Bacteriol, 1999, 49(1):19-23.DOI:10.1099/00207713-49-1-19.
doi: 10.1099/00207713-49-1-19 |
[40] |
KANALY R A, HARAYAMA S, WATANABE K. Rhodanobacter sp.strain BPC1 in a benzo[a]pyrene-mineralizing bacterial consortium[J]. Appl Environ Microbiol, 2002, 68(12):5826-5833.DOI:10.1128/AEM.68.12.5826-5833.2002.
doi: 10.1128/AEM.68.12.5826-5833.2002 |
[41] |
BANERJEE S, KIRKBY C A, SCHMUTTER D, et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil[J]. Soil Biol Biochem, 2016, 97:188-198.DOI:10.1016/j.soilbio.2016.03.017.
doi: 10.1016/j.soilbio.2016.03.017 |
[42] |
XIA S Q, SHI Y, FU Y G, et al. DGGE analysis of 16S rDNA of ammonia-oxidizing bacteria in chemical-biological flocculation and chemical coagulation systems[J]. Appl Microbiol Biotechnol, 2005, 69(1):99-105.DOI:10.1007/s00253-005-0035-5.
doi: 10.1007/s00253-005-0035-5 pmid: 15983805 |
[43] |
DOBROVOLSKAYA T, GOLOVCHENKO A, LYSAK L, et al. Taxonomic structure of bacterial communities of rhizospheric soil under bogs’ plants[J]. Mosc Univ Soil Sci Bull, 2020, 75(2):93-100.DOI:10.3103/S0147687420020039.
doi: 10.3103/S0147687420020039 |
[44] |
CROMEY M G, GANEV S, BRAITHWAITE M, et al. Didymella exitialis on wheat in New Zealand[J]. N Z J Crop Hortic Sci, 1994, 22(2):139-144.DOI:10.1080/01140671.1994.9513817.
doi: 10.1080/01140671.1994.9513817 |
[45] |
周琳, 杨柳燕, 蔡友铭, 等. 崇明西红花根际土壤和球茎微生物多样性分析[J]. 核农学报, 2020, 34(11):2452-2459.
doi: 10.11869/j.issn.100-8551.2020.11.2452 |
ZHOU L, YANG L Y, CAI Y M, et al. Diversity analysis of microorganism in rhizosphere soil and bulbs of Chongming saffron (Crocus sativus L.)[J]. J Nucl Agric Sci, 2020, 34(11):2452-2459. | |
[46] | 靳微, 杨预展, 孙海菁, 等. 弗吉尼亚栎母树林外生菌根的真菌多样性[J]. 林业科学, 2020, 56(1):120-132. |
JIN W, YANG Y Z, SUN H J, et al. Diversity of ectomycorrhizal fungi a seed collecting forest of Quercus virginiana[J]. Sci Silvae Sin, 2020, 56(1):120-132.DOI:10.11707/j.1001-7488.20200112.
doi: 10.11707/j.1001-7488.20200112 |
|
[47] | 袁志林, 潘雪玉, 靳微. 林木共生菌系统及其作用机制:以杨树为例[J]. 生态学报, 2019, 39(1):381-397. |
YUAN Z L, PAN X Y, JIN W. Tree-associated symbiotic microbes and underlying mechanisms of ecological interactions:a case study of poplar[J]. Acta Ecol Sin, 2019, 39(1):381-397. | |
[48] | 李敏, 闫伟. 海拔对乌拉山油松根围真菌群落结构的影响[J]. 菌物学报, 2019, 38(11):1992-2006. |
LI M, YAN W. Effects of altitude on rhizosphere fungal community structure of Pinus tabulaeformis in Wula Mountain,China[J]. Mycosystema, 2019, 38(11):1992-2006.DOI:10.13346/j.mycosystema.190243.
doi: 10.13346/j.mycosystema.190243 |
|
[49] | 魏松坡, 宋怡静, 贾黎明, 等. 太行山片麻岩区栓皮栎外生菌根真菌多样性[J]. 菌物学报, 2018, 37(4):422-433. |
WEI S P, SONG Y J, JIA L M, et al. Diversity of ectomycorrhizal fungi associated with Quercus variabilis in gneissose area of Taihang Mountains[J]. Mycosystema, 2018, 37(4):422-433.DOI:10.13346/j.mycosystema.170226.
doi: 10.13346/j.mycosystema.170226 |
|
[50] | 张彤彤, 耿增超, 许晨阳, 等. 秦岭辛家山林区落叶松外生菌根真菌多样性[J]. 微生物学报, 2018, 58(3):443-454. |
ZHANG T T, GENG Z C, XU C Y, et al. Diversity of ectomycorrhizal fungi associated with Larix gmelinii in Xinjiashan forest region of Qinling Mountains[J]. Acta Microbiol Sin, 2018, 58(3):443-454.DOI:10.13343/j.cnki.wsxb.20170228.
doi: 10.13343/j.cnki.wsxb.20170228 |
[1] | YANG Fu, WANG Hui, WANG Qin, JIANG Chunqian, ZHOU Yanxu, LI Lubin. Screening of growth-promoting bacteria in the rhizosphere soil of Phyllostachys edulis and their growth-promoting effects in Zhejiang Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 83-90. |
[2] | DAI Di, PENG Jie, LIU Zhiming, WEI Renjie, LI Liangliang. Experimental study on uniformity of microbial cemented sand by bio-grouting [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 217-224. |
[3] | CAO Li, JIN Dongxue, JIANG Jing, LI Tianfang. Analysis of bacterial and fungal community composition and soil enzyme activities in the rhizosphere of transgenic Betula platyphylla [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 129-137. |
[4] | ZONG Jianwei, LI Cheng, ZHANG Jing, YANG Yuhua. Effects of arbuscular mycorrhizal fungi on the growth and physiological characteristics of Xanthoceras sorbifolium under salt stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 168-176. |
[5] | WANG Zimeng, RUAN Honghua, WU Xiaoqiao, YANG Yan, XIE Youchao, SHEN Caiqin, DING Xuenong, CAO Guohua. Effects of nitrogen addition on soil springtail(Collembolan) community in a poplar plantation [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 243-253. |
[6] | FANG Jing, ZHANG Shuman, YAN Shanchun, WU Shuai, ZHAO Jiaqi, MENG Zhaojun. Effects of the compound inoculation of two arbuscular mycorrhizal(AM) fungi on the resistance of Populus pseudo-cathayana × P. deltoides leaves to Hyphantria cunea [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 144-154. |
[7] | YAN Zhengming, RUAN Honghua, LIAO Jiahui, SHI Ke, NI Juanping, CAO Guohua, SHEN Caiqin, DING Xuenong, ZHAO Xiaolong, ZHUANG Xin. Abundance and diversity of soil beetles on the forest floor in different aged poplar plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 236-242. |
[8] | GUO Lili, ZHANG Chenjie, WANG Fei, SHEN Jiajia, ZHANG Kaiyue, HE Lixia, GUO Qi, HOU Xiaogai. Analysis of bacterial community characteristics in the rhizosphere soil of wild tree peony [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 45-55. |
[9] | SUN Wei, WANG Bin, CHU Xiuli, WANG Xiuhua, ZHANG Dongbei, WU Xiaolin, ZHOU Zhichun. Response and association of the growth and nutrient traits of Pinus massoniana container seedlings to phosphorus addition and inoculation of mycorrhizal fungi [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 226-233. |
[10] | WU Jiawen, YIN Yannan, TAN Jiajin, HAO Dejun. A preliminary study on resistance of Pinus massoniana induced by Bacillus cereus NJSZ-13 strain to Bursaphelenchus xylophilus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 53-58. |
[11] | PAN Min, ZHU Minglong, TAN Jiajin, LI Liangliang, HAO Dejun. The antagonism of Bacillus pumilus LYMC-3 strain on Phomopsis macrospora [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 151-156. |
[12] | WU Yejiao, GAO Yuan, CAO Chengliang, JIANG Yuji, LYU Lianfei, WU Wenlong, JIANG Jihong, ZHU Hong, LI Rongpeng. Community structure of phoD phosphate solubilizing bacteria in rhizosphere soil of different blueberry cultivars [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 95-102. |
[13] | MA Shilin, CAO Pengxiang, ZHANG Jinchi, LIU Jing, WANG Jinping, ZHU Lingjun, YUAN Zhongming. Effects of AMF on the growth and photosynthetic characteristics of Zelkova serrata under salt stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 122-130. |
[14] | ZHANG Xiaorong, DUAN Guangde, HAO Longfei, LIU Tingyan, ZHANG You, ZHANG Shengxi. Responses of the non-structural carbohydrates and rhizosphere soil enzymes of Clematis fruticosa to nitrogen deposition and inoculation mycorrhizal fungi [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 171-178. |
[15] | WANG Shaojun, ZUO Qianqian, CAO Qianbin, WANG Ping, YANG Bo, ZHAO Shuang, CHEN Minkun. Response of readily oxidized carbon to arbuscular mycorrhizal (AM) fungi inoculations in rocky desert soil, Xundian, Yunnan Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 7-14. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||