JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (5): 87-96.doi: 10.12302/j.issn.1000-2006.202108019
Previous Articles Next Articles
GUO Wei1(), HAN Xiu1, ZHANG Li2, WANG Ying1, DU Hui1, YAN Yu1, SUN Zhongkui3, ZHANG Lin1, LI Guohua1,*(
), LUO Lei1,*(
)
Received:
2021-08-10
Revised:
2022-07-12
Online:
2023-09-30
Published:
2023-10-10
Contact:
LI Guohua,LUO Lei
CLC Number:
GUO Wei, HAN Xiu, ZHANG Li, WANG Ying, DU Hui, YAN Yu, SUN Zhongkui, ZHANG Lin, LI Guohua, LUO Lei. Morphological, photosynthetic physiological and transcriptome analyses of Pteroceltis tatarinowii in response to different nitrogen application levels[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 87-96.
Table 1
Primer sequences for real-time PCR"
基因编号 gene ID | 引物序列(正向/反向) primer sequences (forward/reverse) |
---|---|
Pt13441/f2p0/1188 | GAAGGTGGGAAGCACCAACT/ ACCACCTCTTATCTCCGGCT |
Pt17935/f14p0/953 | TATGGCTTCAATGGCGGGTT/ TGACCATGTTCAAGCGGGTT |
Pt21392/f10p0/756 | ATGGTGGCATGGACTTGAGG/ CCCATCGACATTAGCACCGT |
Pt17952/f3p0/946 | GGGACTTCTTGTCCCTCGTG/ TTCTTCGTCCGAAGCTGCAT |
Pt18021/f3p0/940 | CAGATATCGCCGGACTGACC/ AGTCTTTTCGATCGTCGCGT |
Pt21940/f2p0/718 | CTCCCCCAATTCAATGGGCT/ GTAATCACACCGAGCACCCA |
Pt10185/f2p0/1383 | ATTGGCGAGCTTCTCACCTC/ CTGTCAAAATTGGCTGCGCT |
Pt3975/f2p0/1900 | TGGCAAATTCGTGGAGTGGT/ TTCCACTCTGCAGGCTTGTC |
Pt527/f2p0/2771 | ATTGGCGAGCTTCTCACCTC/ CTGTCAAAATTGGCTGCGCT |
Pt12965/f6p0/1249 | TGGGCTTTGAAGCAGCTTGT/ TCCTTGGTTGGTTCCCCTCT |
Table 2
Morphological and photosynthetic physiological features of P. tatarinowii to different nitrogen treatments"
指标 parameter | 缺氮 N0 | 中氮 N2 | 高氮 N50 | 显著性 significant |
---|---|---|---|---|
株高/cm height | 85.35±1.43 c | 91.68±2.27 b | 101.52 ± 2.55 a | ** |
地径/mm stem diameter | 4.79±0.11 c | 4.99±0.09 b | 5.22±0.07 a | ** |
叶片数量number of leaves | 24.50±1.26 c | 26.70±0.75 b | 31.00±1.29 a | ** |
叶面积/cm2 leaf area | 46.95±2.4 c | 50.21±1.53 b | 59.30±2.17 a | ** |
比叶面积/(cm2·g-1) specific leaf area | 186.26±11.69 c | 219.53±7.15 b | 240.7 a±10.04 a | ** |
总根长/m total root length | 60.12±4.90 a | 49.88±4.20 b | 39.85±2.88 c | ** |
总根表面积/cm2 total root surface area | 350.52±13.27 a | 267.35±15.62 b | 173.58±16.95 c | ** |
总根体积/cm3 total root volume | 1.93±0.16 a | 1.57±0.13 b | 0.89±0.12 c | ** |
比根长/(m· g-1) specific root length | 23.98±0.59 a | 22.63±0.39 b | 16.57±0.76 c | ** |
根冠比root to shoot ratio | 0.81±0.06 a | 0.56±0.08 b | 0.33±0.05 c | ** |
茎生物量/(g· 株-1) biomass of stems | 0.84±0.09 c | 1.20±0.07 b | 1.46±0.10 a | ** |
叶片生物量/(g· 株-1) biomass of leaves | 1.97±0.09 c | 2.48±0.11 b | 3.46±0.12 a | ** |
根系生物量/(g· 株-1) biomass of roots | 2.48±0.12 a | 1.99±0.13 b | 1.54±0.08 c | ** |
净光合速率/(μmol· m-2·s-1) net photosynthetic rates | 11.26±0.75 c | 14.13±0.66 b | 17.91±0.90 a | ** |
气孔导度/(mol· m-2·s-1) stomatal conductance | 0.46±0.04 c | 0.54±0.06 b | 0.62±0.05 a | * |
蒸腾速率/(mmol· m-2· s-1) transpiration | 5.79±0.12 b | 6.56±0.10 a | 6.56±0.14 a | ** |
叶绿素a含量/(mg· g-1) chlorophyll a content | 4.46±0.10 c | 5.55±0.14 b | 6.62±0.12 a | ** |
叶绿素b含量/(mg· g-1) chlorophyll b content | 1.74±0.08 c | 2.30±0.12 b | 2.62±0.06 a | ** |
类胡萝卜素含量/(mg·g-1)carotenoid content | 1.10±0.08 c | 1.35±0.06 b | 1.53±0.07 a | ** |
根系氮含量/(mg·g-1) N content in roots | 3.59±0.12 c | 4.92±0.13 b | 6.80±0.09 a | ** |
叶片氮含量/(mg·g-1) N content in leaves | 6.81±0.08 c | 9.16±0.13 b | 12.30±0.12 a | ** |
茎氮含量/(mg·g-1) N content in stems | 4.49±0.13 c | 6.49±0.15 b | 9.48±0.12 a | ** |
Table 3
A summary of PacBio sequencing data in P. tatarinowii"
名称term | 数量amount |
---|---|
子读序数量 number of subread | 23 007 808 |
子读序平均长度/bp average length of subread | 1 098 |
子读序的N50值/bp N50 of subread | 1 362 |
环形一致性序列数量 number of CCS | 313 170 |
环形一致性序列的平均长度/bp average length of CCS | 1 441 |
环形一致性序列的N50值/bp N50 of CCS | 1 761 |
全长非嵌合序列数量 number of FLNC | 219 220 |
全长非嵌合序列平均长度/bp average length of FLNC | 1 171 |
校正一致性序列数量 number of PCS | 29 644 |
校正一致性序列的平均长度/bp average length of PCS | 1 197 |
校正一致性序列的N50值/bp N50 of PCS | 1 461 |
基因数量 number of gene | 11 801 |
基因序列的平均长度/bp average length of gene sequence | 1 375 |
基因序列的N50值/bp N50 of gene sequence | 1 628 |
Table 4
Statistics of RNA-seq results in different nitrogen treatments"
生物学重复 样本名称 biological replicates name | 经过质控后 的读序 clean reads | 比对的读序 mapped reads | 比对率/% mapping ratio |
---|---|---|---|
N0_1 | 50 405 948 | 27 669 444 | 54.89 |
N0_2 | 55 548 484 | 30 325 496 | 54.59 |
N0_3 | 60 380 062 | 32 665 094 | 54.10 |
N2_1 | 59 652 746 | 32 383 922 | 54.29 |
N2_2 | 60 920 142 | 32 595 410 | 53.51 |
N2_3 | 61 196 822 | 32 977 234 | 53.89 |
N50_1 | 68 662 986 | 41 316 042 | 60.17 |
N50_2 | 52 207 344 | 31 092 286 | 59.56 |
N50_3 | 69 973 034 | 41 729 364 | 59.64 |
合计 | 538 947 568 | 302 754 292 | 56.18 |
Table 5
Expression analysis of the nine differentially expressed genes in roots and leaves"
基因编号 gene ID | 基因注释 gene description | RNA-seq表达量 (根) RNA-seq expression level in roots | 荧光定量PCR表达量(根) RT-qPCR expression level in roots | 荧光定量PCR表达量 (叶片) RT-qPCR expression level in leaves | ||||||
---|---|---|---|---|---|---|---|---|---|---|
缺氮 (N0) | 中氮 (N2) | 高氮 (N50) | 缺氮 (N0) | 中氮 (N2) | 高氮 (N50) | 缺氮 (N0) | 中氮 (N2) | 高氮 (N50) | ||
Pt13441/f2p0/1188 Oxygen-evolving enhancer protein 2 | 氧增强蛋白基因2(OEE2) | 6.35 | 13.05 | 23.17 | 1.00±0.06 | 4.62±0.21 | 15.12±0.50 | 3.47±0.48 | 5.09±0.30 | 20.60±4.74 |
Pt17935/f14p0/953 | 氧增强蛋白基因3 (OEE3) Oxygen-evolving enhancer protein 3 | 8.03 | 46.46 | 87.6 | 1.00±0.05 | 6.23±0.30 | 18.93±1.35 | 2.91±0.40 | 15.12±0.50 | 32.59±28.21 |
Pt21392/f10p0/756 | 光系统Ⅱ10kDa蛋白基因 (PSBR photosystem Ⅱ 10 kDa polypeptide, chloroplastic | 47.83 | 151.77 | 305.11 | 1.00±0.06 | 5.46±0.14 | 18.73±2.39 | 2.14±0.12 | 18.93±1.35 | 41.23±1.59 |
Pt17952/f3p0/946 | 光系统Ⅱ修复蛋白(PSB27) photosystem Ⅱ repair protein PSB27-H1, chloroplastic | 3.36 | 8.26 | 14.74 | 1.00±0.13 | 5.09±0.30 | 30.83±1.32 | 2.70±0.11 | 27.85±1.20 | 44.17±0.91 |
Pt18021/f3p0/940 | 光系统Ⅰ反应中心蛋白亚基Ⅲ(PSAF) photosystem I reaction center subunit Ⅲ, chloroplastic | 1.93 | 5.51 | 16.88 | 1.00±0.07 | 3.37±0.09 | 22.22±0.65 | 2.88±0.07 | 30.83±1.32 | 88.05±4.18 |
Pt21940/f2p0/718 | 光系统Ⅰ反应中心蛋白亚基K (PSAK) photosystem I reaction center subunit psaK, chloroplastic-like | 7.79 | 17.78 | 30.73 | 1.00±0.06 | 3.20±0.16 | 15.08±0.90 | 3.95±0.12 | 24.16±1.12 | 55.10±0.63 |
Pt10185/f2p0/1383 | 硝酸还原酶基因(NR) nitrate reductase | 23.92 | 105.79 | 386.53 | 1.00±0.09 | 4.78±0.12 | 24.16±1.12 | 3.24±0.19 | 20.59±4.74 | 95.26±3.46 |
Pt527/f2p0/2771 | 硝酸还原酶基因(NR) nitrate reductase | 32.58 | 192.52 | 827.61 | 1.00±0.06 | 8.42±0.75 | 26.98±0.94 | 4.59±0.21 | 11.91±0.82 | 25.04±1.46 |
Pt3975/f2p0/1900 | 亚硝酸还原酶基因(NiR) nitrite reductase | 49.69 | 199.64 | 363.95 | 1.00±0.10 | 12.55±0.88 | 55.10±0.63 | 3.11±0.10 | 15.08±0.90 | 30.83±1.32 |
[1] | PRINSI B, NEGRI A S, PESARESI P, et al. Evaluation of protein pattern changes in roots and leaves of Zea mays plants in response to nitrate availability by two-dimensional gel electrophoresis analysis[J]. BMC Plant Biol, 2009, 9:113.DOI: 10.1186/1471-2229-9-113. |
[2] | MASCLAUX-DAUBRESSE C, DANIEL-VEDELE F, DECHORGNAT J, et al. Nitrogen uptake,assimilation and remobilization in plants:challenges for sustainable and productive agriculture[J]. Ann Bot, 2010, 105(7):1141-1157.DOI: 10.1093/aob/mcq028. |
[3] |
GRUFFMAN L, JÄMTGÅRD S, NÄSHOLM T. Plant nitrogen status and co-occurrence of organic and inorganic nitrogen sources influence root uptake by Scots pine seedlings[J]. Tree Physiol, 2014, 34(2):205-213.DOI: 10.1093/treephys/tpt121.
pmid: 24488801 |
[4] | KRAPP A, BERTHOMÉ R, ORSEL M, et al. Arabidopsis roots and shoots show distinct temporal adaptation patterns toward nitrogen starvation[J]. Plant Physiol, 2011, 157(3):1255-1282.DOI: 10.1104/pp.111.179838. |
[5] |
LUO J, ZHOU J, LI H, et al. Global poplar root and leaf transcriptomes reveal links between growth and stress responses under nitrogen starvation and excess[J]. Tree Physiol, 2015, 35(12):1283-1302.DOI: 10.1093/treephys/tpv091.
pmid: 26420789 |
[6] |
COOKE J E K, MARTIN T A, DAVIS J M. Short-term physiological and developmental responses to nitrogen availability in hybrid poplar[J]. New Phytol, 2005, 167(1):41-52.DOI: 10.1111/j.1469-8137.2005.01435.x.
pmid: 15948828 |
[7] | CANALES J, MOYANO T C, VILLARROEL E, et al. Systems analysis of transcriptome data provides new hypotheses about Arabidopsis root response to nitrate treatments[J]. Front Plant Sci, 2014, 5:22.DOI: 10.3389/fpls.2014.00022. |
[8] | RUFFEL S, KROUK G, RISTOVA D, et al. Nitrogen economics of root foraging:transitive closure of the nitrate-cytokinin relay and distinct systemic signaling for N supply vs.demand[J]. Proc Natl Acad Sci USA, 2011, 108(45):18524-18529.DOI: 10.1073/pnas.1108684108. |
[9] | 郑万钧, 中国树木志辑委员会中国树木志编辑委员会编.中国树木志.第3卷[M]. 北京: 中国林业出版社, 1997. |
[10] | 陈代光. 青檀[J]. 中国水土保持, 1994, 11: 36. |
CHEN D G. Pteroceltis tatarinowii[J]. Soil Water Conserve, 1994, 11: 36. | |
[11] | MAMASHITA T, LAROCQUE G R, DESROCHERS A, et al. Short-term growth and morphological responses to nitrogen availability and plant density in hybrid poplars and willows[J]. Biomass Bioenergy, 2015, 81:88-97.DOI: 10.1016/j.biombioe.2015.06.003. |
[12] | SALMELA L, RIVALS E. LoRDEC:accurate and efficient long read error correction[J]. Bioinformatics, 2014, 30(24):3506-3514.DOI: 10.1093/bioinformatics/btu538. |
[13] | FU L M, NIU B F, ZHU Z W, et al. CD-HIT:accelerated for clustering the next-generation sequencing data[J]. Bioinformatics, 2012, 28(23):3150-3152.DOI: 10.1093/bioinformatics/bts565. |
[14] | SHIMIZU K, ADACHI J, MURAOKA Y. ANGLE:a sequencing errors resistant program for predicting protein coding regions in unfinished cDNA[J]. J Bioinform Comput Biol, 2006, 4(3):649-664.DOI: 10.1142/s0219720006002260. |
[15] |
LI W Z, JAROSZEWSKI L, GODZIK A. Tolerating some redundancy significantly speeds up clustering of large protein databases[J]. Bioinformatics, 2002, 18(1):77-82.DOI: 10.1093/bioinformatics/18.1.77.
pmid: 11836214 |
[16] | KANEHISA M, GOTO S, KAWASHIMA S, et al. The KEGG resource for deciphering the genome[J]. Nucleic Acids Res, 2004, 32(Database issue):D277-D280.DOI: 10.1093/nar/gkh063. |
[17] | TATUSOV R L, FEDOROVA N D, JACKSON J D, et al. The COG database:an updated version includes eukaryotes[J]. BMC Bioinformatics, 2003, 4:41.DOI: 10.1186/1471-2105-4-41. |
[18] | ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology:tool for the unification of biolog[J]. Nat Genet, 2000, 25(1):25-29.DOI: 10.1038/75556. |
[19] | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method[J]. Methods, 2001, 25(4):402-408.DOI: 10.1006/meth.2001.1262. |
[20] | SALEETHONG P, ROYTRAKUL S, KONG-NGERN K, et al. Differential proteins expressed in rice leaves and grains in response to salinity and exogenous spermidine treatments[J]. Rice Sci, 2016, 23(1):9-21.DOI: 10.1016/j.rsci.2016.01.002. |
[21] | YANG E J, OH Y A, LEE E S, et al. Oxygen-evolving enhancer protein 2 is phosphorylated by glycine-rich protein 3/wall-associated kinase 1 in Arabidopsis[J]. Biochem Biophys Res Commun, 2003, 305(4):862-868.DOI: 10.1016/s0006-291x(03)00851-9. |
[22] | 李衡, 魏亦农, 李志博, 等. 陆地棉光合系统Ⅱ PsbR基因的克隆和表达分析[J]. 西北农业学报, 2014, 23(8):79-84. |
LI H, WEI Y N, LI Z B, et al. Cloning and expression analysis of photosystem Ⅱ PsbR gene in Gossypium hirsupum[J]. Acta Agric Boreali Occidentalis Sin, 2014, 23(8):79-84.DOI: 10.7606/j.issn.1004-1389.2014.08.013. | |
[23] |
KANG J, YU H P, TIAN C H, et al. Suppression of photosynthetic gene expression in roots is required for sustained root growth under phosphate deficiency[J]. Plant Physiol, 2014, 165(3):1156-1170.DOI: 10.1104/pp.114.238725.
pmid: 24868033 |
[24] | MU X H, CHEN Q W, CHEN F J, et al. A RNA-seq analysis of the response of photosynthetic system to low nitrogen supply in maize leaf[J]. Int J Mol Sci, 2017, 18(12):2624.DOI: 10.3390/ijms18122624. |
[25] |
NAWAZ M A, CHEN C, SHIREEN F, et al. Genome-wide expression profiling of leaves and roots of watermelon in response to low nitrogen[J]. BMC Genomics, 2018, 19(1):456.DOI: 10.1186/s12864-018-4856-x.
pmid: 29898660 |
[1] | JIANG Xiaozeng, ZHU Yan, ZHOU Hengwei, HUANG Xingzhao, FU Longlong, WAN Fangfang. Effects of drought on nitrogen uptake and distribution in Camellia oleifera root under nitrogen addition [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 95-102. |
[2] | CAO Yonghui, CHEN Qingbiao, ZHOU Benzhi, GE Xiaogai, WANG Xiaoming. Effects of different drought periods on the spatiotemporal distribution of nitrogen content in the leaves of Phyllostachys edulis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 155-161. |
[3] | YANG Jinlai, XIAN Quan, LIANG Minglan, ZHENG Jiong, CHEN Jian, LIU Shenghui, WU Liangru. Quality dynamics of fresh Chimonobambusa utilis bamboo shoots under the liquid nitrogen quick-frozen storage condition [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 201-209. |
[4] | ZHANG Miao, RUAN Honghua, SHEN Caiqin, DING Xuenong, CAO Guohua. Effects of long-term application of biogas slurry on soil carbon, nitrogen, phosphorus and their metering ratio in poplar plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 102-110. |
[5] | ZHOU Mengtian, LIU Li, FU Ruoxian, LI Xiaogang. Effects of litter decomposition of Cunninghamia lanceolata and Schima superba on soil carbon contents, nitrogen contents and enzyme activities in Cunninghamia lanceolata plantations [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 131-138. |
[6] | CHEN Leiru, WEN Zhengyu, XU Xiaoniu, YIN Ruoyong, GAO Yu. Effects of long-term nitrogen and phosphorus additions on soil organic carbon storage and its components in a subtropical forest [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 139-146. |
[7] | SUN Huizhen, LI Shan, LIU Shanshan, WANG Xingchang. Nitrogen, phosphorus contents and stoichiometric characteristics in different organs of three tree species in northeast China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 147-155. |
[8] | MA Chong, LU Hui, LI Yunmao, CAO Bing, ZHU Jinzhong, KANG Yandong. Effects of elevated CO2 concentration and nitrogen addition in simulated atmosphere on growth and photosynthetic characteristics of Lycium barbarum [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 209-218. |
[9] | WANG Zimeng, RUAN Honghua, WU Xiaoqiao, YANG Yan, XIE Youchao, SHEN Caiqin, DING Xuenong, CAO Guohua. Effects of nitrogen addition on soil springtail(Collembolan) community in a poplar plantation [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 243-253. |
[10] | DING Yong, LIU Xin, ZHANG Jinchi, WANG Yuhao, CHEN Meiling, LI Tao, LIU Xiaowu, ZHOU Yuexiang, SUN Lianhao, LIAO Yi. Effects of acid rain-based transformation on Cunninghamia lanceolata fine root growth and soil nutrient content [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 90-98. |
[11] | SUN Jinwei, WANG Shengyan, FAN Diwu, ZHU Yongli. Effects of C, N and P additions on soil respiration in woodland under Cd stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 140-146. |
[12] | ZUO Zhuang, ZHANG Yun, CUI Xiaoyang. Early effects of fire on soil nitrogen content and form in Larix gmelinii forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 147-154. |
[13] | YANG Jiading, LIU Yujie, FENG Jianyuan, ZHANG Yuanlan. Nitrogen resorption machanism during leaf senescence in woody plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 1-8. |
[14] | DENG Jiazhen, YE Shaoming, LIN Mingye, LAN Yahui, YAN Yu, FAN Rongyuan, PAN Cailing. Morphological and ultrastructural characteristics of root nodules and rhizobium of Dalbergia odorifera [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 259-267. |
[15] | YUAN Ying, WANG Xuefeng, WANG Tian, CHEN Feifei, HUANG Chuanteng, LIN Ling, DONG Xiaona. Estimation of total nitrogen in young Aquilaria sinensis based on multi image features [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 19-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||