[1] |
HILIOTI Z. Non-transgenic approach to deliver ZFNs in seeds for targeted genome engineering[J]. Methods Mol Biol, 2018, 1867:187-199.DOI: 10.1007/978-1-4939-8799-3_14.
|
[2] |
SHANKAR S, SREEKUMAR A, PRASAD D, et al. Genome editing of oncogenes with ZFNs and TALENs:caveats in nuclease design[J]. Cancer Cell Int, 2018, 18:169.DOI: 10.1186/s12935-018-0666-0.
|
[3] |
JACOBS T B, LAFAYETTE P R, SCHMITZ R J, et al. Targeted genome modifications in soybean with CRISPR/Cas9[J]. BMC Biotechnol, 2015, 15:16.DOI: 10.1186/s12896-015-0131-2.
|
[4] |
LI W, TENG F, LI T D, et al. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems[J]. Nat Biotechnol, 2013, 31(8):684-686.DOI: 10.1038/nbt.2652.
|
[5] |
WANG P C, ZHANG J, SUN L, et al. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system[J]. Plant Biotechnol J, 2018, 16(1):137-150.DOI: 10.1111/pbi.12755.
|
[6] |
JIANG W Z, ZHOU H B, BI H H, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis,tobacco,sorghum and rice[J]. Nucleic Acids Res, 2013, 41(20):e188.DOI: 10.1093/nar/gkt780.
|
[7] |
OSAKABE Y, LIANG Z C, REN C, et al. CRISPR-Cas9-mediated genome editing in apple and grapevine[J]. Nat Protoc, 2018, 13(12):2844-2863.DOI: 10.1038/s41596-018-0067-9.
|
[8] |
刘苗霞, 张颜睿, 付凤玲. 标记基因在植物转基因中的安全性研究[J]. 安徽农业科学, 2011, 39(28):17186-17187,17227.
|
|
LIU M X, ZHANG Y R, FU F L. Study on the bio-safety of tag genes in transgenic plants[J]. J Anhui Agric Sci, 2011, 39(28):17186-17187,17227.DOI: 10.13989/j.cnki.0517-6611.2011.28.007.
|
[9] |
LIANG Z, CHEN K L, ZHANG Y, et al. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleo proteins[J]. Nat Protoc, 2018, 13(3):413-430.DOI: 10.1038/nprot.2017.145.
|
[10] |
WOO J W, KIM J, KWON S I, et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins[J]. Nat Biotechnol, 2015, 33(11):1162-1164.DOI: 10.1038/nbt.3389.
|
[11] |
刘星, 苏良辰, 张拜宏, 等. 异源表达花生基因AhGLK1对拟南芥glk1glk2突变体表型特征及抗旱性的影响[J]. 华南师范大学学报(自然科学版), 2020, 52(3):78-84.
|
|
LIU X, SU L C, ZHANG B H, et al. The effect of heterologous expression of peanut gene AhGLK1 on the phenotypic characteristics and drought resistance of Arabidopsis glk1 glk2 mutants[J]. J South China Norm Univ (Nat Sci Ed), 2020, 52(3):78-84.DOI: 10.6054/j.jscnun.2020047.
|
[12] |
GANG H X, LI R H, ZHAO Y M, et al. Loss of GLK1 transcription factor function reveals new insights in chlorophyll biosynthesis and chloroplast development[J]. J Exp Bot, 2019, 70(12):3125-3138.DOI: 10.1093/jxb/erz128.
|
[13] |
任烁淇, 刘冰洋, 李雪莹, 等. 白桦黄叶突变株叶色变化规律及苗高生长特性分析[J]. 植物研究, 2018, 38(6):852-859.
|
|
REN S Q, LIU B Y, LI X Y, et al. Analysis of leaf color variation and height growth characteristics of yellow-green leaf mutant in birch[J]. Bull Bot Res, 2018, 38(6):852-859.DOI: 10.7525/j.issn.1673-5102.2018.06.008.
|
[14] |
张嫚嫚, 刘桂丰, 冮慧欣, 等. 白桦黄叶突变株Long non-coding RNA(LncRNA)测序及其靶基因[J]. 东北林业大学学报, 2019, 47(10):1-7.
|
|
ZHANG M M, LIU G F, GANG H X, et al. Transcriptome sequencing of long non-coding RNA (LncRNA) and its target gene analysis of Betula platyphylla yellow leaf mutant[J]. J Northeast For Univ, 2019, 47(10):1-7.DOI: 10.13759/j.cnki.dlxb.2019.10.001.
|
[15] |
李菲, 张淑江, 章时蕃, 等. 基因枪法介导大白菜小孢子转基因技术研究初报[J]. 园艺学报, 2017, 44(1):62-68.
|
|
LI F, ZHANG S J, ZHANG S F, et al. Transformation of Chinese cabbage microspores by particle bombardment[J]. Acta Hortic Sin, 2017, 44(1):62-68.DOI: 10.16420/j.issn.0513-353x.2016-0730.
|
[16] |
KIM S, KIM D, CHO S W, et al. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins[J]. Genome Res, 2014, 24(6):1012-1019.DOI: 10.1101/gr.171322.113.
|
[17] |
NISHIMASU H, RAN F A, HSU P D, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA[J]. Cell, 2014, 156(5):935-949.DOI: 10.1016/j.cell.2014.02.001.
|
[18] |
SUBBURAJ S, CHUNG S J, LEE C, et al. Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins[J]. Plant Cell Rep, 2016, 35(7):1535-1544.DOI: 10.1007/s00299-016-1937-7.
|
[19] |
MALNOY M, VIOLA R, JUNG M H, et al. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins[J]. Front Plant Sci, 2016, 7:1904.DOI: 10.3389/fpls.2016.01904.
|
[20] |
SVITASHEV S, SCHWARTZ C, LENDERTS B, et al. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes[J]. Nat Commun, 2016, 7:13274.DOI: 10.1038/ncomms13274.
|
[21] |
FITTER D W, MARTIN D J, COPLEY M J, et al. GLK gene pairs regulate chloroplast development in diverse plant species[J]. Plant J, 2002, 31(6):713-727.DOI: 10.1046/j.1365-313x.2002.01390.x.
|
[22] |
唐亚萍, 杨生保, 杨涛, 等. 转化同源Golden Like转录因子提高番茄品质的研究[J]. 分子植物育种, 2017, 15(10):3969-3975.
|
|
TANG Y P, YANG S B, YANG T, et al. Study on the transformation of homologous golden like transcription factor to improve the quality of tomato[J]. Mol Plant Breed, 2017, 15(10):3969-3975.DOI: 10.13271/j.mpb.015.003969.
|
[23] |
李艺迪, 顾宸瑞, 冮慧欣, 等. 转基因金叶银中杨叶色及生长变异分析[J]. 植物研究, 2020, 40(6):897-905.
|
|
LI Y D, GU C R, GANG H X, et al. Leaf color and growth variation of transgenic gold leaf poplar[J]. Bull Bot Res, 2020, 40(6):897-905.DOI: 10.7525/j.issn.1673-5102.2020.06.012.
|
|
李艺迪, 顾宸瑞, 冮慧欣, 等. 转基因金叶银中杨叶色及生长变异分析[J]. 植物研究, 2020, 40(6):897-905.
|
|
LI Y D, GU C R, GANG H X, et al. Leaf color and growth variation of transgenic gold leaf poplar[J]. Bull Bot Res, 2020, 40(6):897-905. DOI:10.7525/j.issn.1673-5102.2020.06.012.
|