JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1): 74-80.doi: 10.12302/j.issn.1000-2006.202302027
Special Issue: 森林生态系统生物多样性研究专题
Previous Articles Next Articles
DONG Yujie(), MAO Lingfeng(), ZHANG Min, LU Xudong, WU Xiuping
Received:
2023-02-15
Revised:
2023-07-24
Online:
2024-01-30
Published:
2024-01-24
Contact:
MAO Lingfeng
E-mail:dongyujie9895@163.com;maolingfeng2008@163.com
CLC Number:
DONG Yujie, MAO Lingfeng, ZHANG Min, LU Xudong, WU Xiuping. Relationship between aboveground biomass and environmental factors of subtropical typical evergreen broad-leaved forest in east China[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 74-80.
Table 1
Layout and overview of plots"
群落类型 community type | 样方个数 number of plots | 海拔范围/m altitude range | 经纬度范围 latitude and longitude range | 优势种 dominant species |
---|---|---|---|---|
栲类林Castanopsis spp. forest | 40 | 220~1 154 | 116.93°~120.59°E, 24.51°~30.34°N | 栲(C. fargesii)、甜槠(C. eyrei)、青冈(Q. glauca)、柯(L. glaber)、硬壳柯(L. hancei)、米槠(C. carlesii)、毛锥(C. fordii) |
木荷林Schima superba forest | 20 | 60~1 050 | 117.03°~119.80°E, 25.09°~30.25°N | 木荷(S. superba) |
Table 2
Correlation coefficient between aboveground biomass and longitude, latitude and altitude of different types of evergreen broad-leaved forest"
群落类型 community type | 经度 longitude | 纬度 latitude | 海拔 altitude |
---|---|---|---|
栲类林Castanopsis forest | -0.51** | -0.50** | 0.15 |
木荷林S. superba forest | -0.64** | -0.47* | -0.26 |
典型常绿阔叶林typical evergreen broad-leaved forest | -0.53** | -0.51** | 0.11 |
Table 3
Correlation coefficient between aboveground biomass and environmental factors for different types of evergreen broad-leaved forest"
群落类型 community type | 气温 air temperature | 降水量 precipitation | 太阳辐射总强度 total solar radiation intensity | 土壤容重 soil bulk | 土壤浅层有机碳 shallow soil organic carbon | pH |
---|---|---|---|---|---|---|
栲类林 Castanopsif forest | -0.07 | 0.10 | -0.23 | 0.26 | -0.27 | 0.62** |
木荷林 S. superba forest | -0.53* | 0.32 | -0.60** | 0.43 | 0.40 | 0.62** |
典型常绿阔叶林 typical evergreen broad-leaved forest | -0.23 | 0.16 | -0.32* | 0.33** | -0.10 | 0.63** |
Table 4
Path interpretation of structural equation model"
路径 path | 假设的机制 hypothetical mechanism |
---|---|
气候climate →地上生物量aboveground biomass | 生物量的分布模式受到气候的强烈影响[ |
土壤soil →地上生物量aboveground biomass | 在同一个生态系统的环境条件下,位于营养丰富的土层会储存较高的生物量[ |
地理地形geography and topography→ 地上生物量aboveground biomass | 在中国东西样带上植物群落地上生物量(AGB)随着经度的增加而增加,表现出明显的经度地带性特征[ |
地理地形geography and topography→气候climate | 地理位置和立地环境条件可以影响森林生长的微气候环境[ |
地理地形geography and topography→土壤soil | 土壤性质因地理位置而异[ |
气候climate →土壤soil | 不同气候影响下进化出不同的土壤特性[ |
[22] | HAIR J F, RISHER J J, SARSTEDT M, et al. When to use and how to report the results of PLS-SEM[J]. Eur Bus Rev, 2019, 31(1): 2-24. DOI: 10.1108/ebr-11-2018-0203. |
[23] | HUI D F, JACKSON R B. Geographical and interannual variability in biomass partitioning in grassland ecosystems: a synthesis of field data[J]. New Phytol, 2006, 169(1): 85-93. DOI: 10.1111/j.1469-8137.2005.01569.x. |
[24] | CALEÑO-RUIZ B L, GARZÓN F, LÓPEZ-CAMACHO L, et al. Soil resources and functional trait trade-offs determine species biomass stocks and productivity in a tropical dry forest[J]. Front Vet Sci, 2023, 6: 1028359.DOI: 10.3389/ffgc.2023.1028359. |
[25] | 王晓濛, 侯继华, 何念鹏. 中国植物群落生产力由东向西分布格局及其驱动因素[J]. 生态学报, 2023, 43(6):2488-2500. |
WANG X M, HOU J H, HE N P, et al. Distribution pattern and driving factors of plant community productivity from east to west in China[J]. Acta Ecol Sin, 2023, 43(6): 2488-2500. DOI: 10.5846/stxb202203100578. | |
[26] | GONMADJE C, PICARD N, GOURLET-FLEURY S, et al. Altitudinal filtering of large-tree species explains aboveground biomass variation in an Atlantic Central African rain forest[J]. J Trop Ecol, 2017, 33(2): 143-154. DOI: 10.1017/s0266467416000602. |
[27] | 孙丽娜. 山西省森林生物量碳密度空间格局和影响因素研究[D]. 太原: 山西大学, 2020. |
SUN L N. Spatial pattern and influencing factors of forest biomass carbon density in Shanxi Province[D]. Taiyuan: Shanxi University, 2020. DOI: 10.27284/d.cnki.gsxiu.2020.002024. | |
[28] | PIEDALLU C, PEDERSOLI E, CHASTE E, et al. Optimal resolution of soil properties maps varies according to their geographical extent and location[J]. Geoderma, 2022, 412(15): 115723. DOI: 10.1016/j.geoderma.2022.115723. |
[29] | MALHI Y, WOOD D, BAKER T R, et al. The regional variation of aboveground live biomass in old-growth Amazonian forests[J]. Glob Change Biol, 2006, 12(7): 1107-1138. DOI: 10.1111/j.1365-2486.2006.01120.x. |
[30] | KITAYAMA K, AIBA S I. Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo[J]. J Ecol, 2002, 90(1): 37-51. DOI: 10.1046/j.0022-0477.2001.00634.x. |
[31] | MOSER G, HERTEL D, LEUSCHNER C. Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis[J]. Ecosystems, 2007, 10: 924-935. DOI: 10.1007/s10021-007-9063-6. |
[32] | 钱春花, 李明阳, 郑超. 苏南丘陵山区森林生物量时空变化驱动因素分析[J]. 江苏农业学报, 2021, 37(2):382-388. |
QIAN C H, LI M Y, ZHENG C. Analysis on driving factors of spatiotemporal changes of forest biomass in hilly areas of southern Jiangsu[J]. Jiangsu J Agr Sci, 2021, 37(2):382-388.DOI:10.3969/j.issn.1000-4440.2021.02.014. | |
[33] | PENG L, XU X J, LIAO X F, et al. Ampelocalamus luodianensis (Poaceae), a plant endemic to Karst, adapts to resource heterogeneity in differing microhabitats by adjusting its biomass allocation[J]. Glob Ecol Conserv, 2023, 41: e02374. DOI: 10.1016/j.gecco.2023.e02374. |
[34] | FIALA K, TUMA L, HOLUB P. Effect of nitrogen addition and drought on aboveground biomass of expanding tall grasses Calamagrostis epigejos and Arrhenatherum elatius[J]. Biologia, 2011, 66: 275-281. DOI: 10.2478/s11756-011-0001-x. |
[35] | GATTI R C, CASTALDI S, LINDSELL J A, et al. The impact of selective logging and clearcutting on forest structure, tree diversity and aboveground biomass of African tropical forests[J]. Ecol Res, 2014, 30(1): 119-132. DOI: 10.1007/s11284-014-1217-3. |
[36] | IMANI G, BOYEMBA F, LEWIS S, et al. Height-diameter allometry and aboveground biomass in tropical montane forests: insights from the Albertine Rift in Africa[J]. Plos One, 2017. 12(6): e0179653. DOI: 10.1371/journal.pone.0179653. |
[37] | WANG C T, SUN Y, CHEN H Y H, et al. Meta-analysis shows non-uniform responses of above-and belowground productivity to drought[J]. Sci Total Environ, 2021, 782: 146901. DOI: 10.1016/j.scitotenv.2021.146901. |
[38] | 文国卫, 黄秋良, 吕增伟, 等. 气候变化情境下木荷潜在地理分布及生态适宜性分析[J]. 生态学报, 2023, 43(16): 1-10. |
[1] | 芦伟, 余建平, 任海保, 等. 古田山中亚热带常绿阔叶林群落物种多样性的空间变异特征[J]. 生物多样性, 2018, 26(9):1023-1028. |
LU W, YU J P, REN H B, et al. Spatial variation characteristics of species diversity of subtropical evergreen broad-leaved forest community in Gutian Mountain[J]. Biodivers Sci, 2018, 26(9): 1023-1028. DOI: 10.17520/biods.2018138. | |
[2] | DIXON R K, SOLOMON A M, BROWN S, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994, 263(5144): 185-190. DOI: 10.1126/science.263.5144.185. |
[3] | HOUGHTON R A. Aboveground forest biomass and the global carbon balance[J]. Glob Change Biol, 2005, 11(6): 945-958. DOI: 10.1111/j.1365-2486.2005.00955.x. |
[4] | GONZALEZ-AKRE E, PIPONIOT C, LEPORE M, et al. Allodb: an R package for biomass estimation at globally distributed extratropical forest plots[J]. Methods Ecol Evol, 2021, 13(2): 330-338. DOI: 10.1111/2041-210X.13756. |
[5] | SLIK J W F, PAOLI G, MCGUIRE K, et al. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics[J]. Glob Ecol Biogeogr, 2013, 22(12): 1261-1271. DOI: 10.1111/geb.12092. |
[6] | LIU Y C, YU G R, WANG Q F, et al. How temperature, precipitation and stand age control the biomass carbon density of global mature forests[J]. Glob Ecol Biogeogr, 2014, 23: 323-333. DOI: 10.1111/geb.12113. |
[7] | LARJAVAARA M, MULLER-LANDAU H C. Temperature explains global variation in biomass among humid old-growth forests: temperature and old-growth forest biomass[J]. Glob Ecol Biogeogr, 2012, 21(10): 998-1006. DOI: 10.1111/j.1466-8238.2011.00740.x. |
[8] | BARALOTO C, RABAUD C, MOLTO Q, et al. Disentangling stand and environmental correlates of aboveground biomass in Amazonian forests[J]. Glob Change Biol, 2011, 17(8): 2677-2688. DOI: 10.1111/j.1365-2486.2011.02432.x. |
[9] | 杨远盛, 张晓霞, 于海艳, 等. 中国森林生物量的空间分布及其影响因素[J]. 西南林业大学学报, 2015, 35(6):45-52. |
YANG Y S, ZHANG X X, YU H Y, et al. Spatial distribution of forest biomass and its influencing factors in China[J]. J Southwest For Univ, 2015, 35(6): 45-52. DOI: 10.11929/j.issn.2095-1914.2015.06.008. | |
[10] | NIE X Q, WANG D, ZHOU G Y, et al. Storage and controlling factors of soil organic carbon in alpine wetlands and meadow across the Tibetan Plateau[J]. Eur J Soil Sci, 2023, e13383. DOI: 10.1111/ejss.13383. |
[11] | MALEKI S, KHORMALI F, BODAGHABADI M B, et al. Role of geomorphic surface on the aboveground biomass and soil organic carbon storage in a semi-arid region of Iranian Loess Plateau[J]. Quat Int, 2020, 552(30): 111-121. DOI: 10.1016/j.quaint.2018.11.001. |
[12] | CABRERA M, DUIVENVOORDEN J F. Drivers of aboveground biomass of high mountain vegetation in the Andes[J]. Acta Oecol-Int J Ecol, 2019, 102: 103504. DOI: 10.1016/j.actao.2019.103504. |
[13] | KRAMER M G, CHADWICK O A. Controls on carbon storage and weathering in volcanic soils across a high-elevation climate gradient on Mauna Kea, Hawaii[J]. Ecology, 2016, 97(9): 2384-2395. DOI: 10.1002/ecy.1467. |
[14] | WANG X H, KENT M, FANG X F. Evergreen broad-leaved forest in eastern China: its ecology and conservation and the importance of resprouting in forest restoration[J]. For Ecol Manage, 2007, 245: 76-87. DOI: 10.1016/j.foreco.2007.03.043. |
[15] | 孔祥海. 福建梅花山国家级自然保护区常绿阔叶林生态学研究[D]. 厦门: 厦门大学, 2008. |
KONG X H. Ecological study on evergreen broad-leaved forest in Meihuashan national nature reserve in Fujian Province[D]. Xiamen: Xiamen University, 2008. | |
[16] | 樊海东, 陈海燕, 吴雁南, 等. 金华北山南坡主要植被类型的群落特征[J]. 植物生态学报, 2019, 43(10):921-928. |
FAN H D, CHEN H Y, WU Y N, et al. The community characteristics of main vegetation types on the south slope of north mountain in Jinhua[J]. J Plant Ecol, 2019, 43(10): 921-928. DOI: 10.17521/cjpe.2019.0114. | |
[17] | 温远光, 周晓果, 朱宏光, 等. 桉树生态营林的理论探索与实践[J]. 广西科学, 2019, 26(2):159-175+252. |
WEN Y G, ZHOU X G, ZHU H G, et al. Theoretical exploration and practice of Eucalyptus ecological forest management[J]. Guangxi Sci, 2019, 26(2): 159-175+252. DOI: 10.13656/j.cnki.gxkx.20190419.012. | |
[18] | 赖江山, 张谧, 谢宗强. 三峡库区常绿阔叶林优势种群的结构和格局动态[J]. 生态学报, 2006(4):1073-1079. |
LAI J S, ZHANG M, XIE Z Q. The structure and pattern dynamics of dominant populations in evergreen broad-leaved forests in the Three Gorges Reservoir Area[J]. Acta Ecol Sin, 2006 (4): 1073-1079. DOI: 10.3321/j.issn:1000-0933.2006.04.013. | |
[19] | 胡喜生, 洪伟, 吴承祯, 等. 木荷天然种群生命表分析[J]. 广西植物, 2007, 7(3):469-474. |
HU X S, HONG W, WU C Z, et al. Life table analysis of Schima superba natural population[J]. Guihaia, 2007, 7(3): 469-474. DOI: 10.3969/j.issn.1000-3142.2007.03.019. | |
[20] | 李川, 张廷军, 陈静. 近40年青藏高原地区的气候变化——NCEP和ECMWF地面气温及降水再分析和实测资料对比分析[J]. 高原气象, 2004(S1):97-103. |
LI C, ZHANG T J, CHEN J. Climate change in the Qinghai Tibet Plateau region over the past 40 years: reanalysis and comparative analysis of NCEP and ECMWF surface temperature and precipitation data[J]. Plateau Meteor, 2004 (S1): 97-103. DOI: 10.3321/j.issn:1000-0534.2004.z1.016. | |
[38] | WEN G W, HUANG Q L, LYU Z W, et al. Analysis of potential geographical distribution and ecological suitability of Schima superba under climate change[J]. Acta Ecol Sin, 2023, 43(16): 1-10. DOI: 10.5846/stxb202201130121. |
[21] | WANG B L, FRENCH H M. Climate controls and high-altitude permafrost, Qinghai-Xizang (Tibet) Plateau, China[J]. Permafrost Periglacial Process, 1994, 5(2): 87-100. DOI: 10.1002/ppp.3430050203. |
[1] | WU Yan, HUANG Qing, LIU Xun, ZHENG Rui, CEN Jiabao, DING Bo, ZHANG Yunlin, FU Yuhong. Effects of Pinus massoniana plantation age on soil physical and chemical properties in Karst areas in southwest China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 99-107. |
[2] | ZHOU Youfeng, XIE Binglou, LI Mingshi. Mapping regional forest aboveground biomass from random forest Co-Kriging approach: a case study from north Guangdong [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 169-178. |
[3] | LU Xudong, DONG Yuran, LI Yao, MAO Lingfeng. Community assembly mechanism for different planting ages of Chinese fir artificial forests in subtropical China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 67-73. |
[4] | YANG Yunfeng, YANG Jiaqi. Ecological renovation design of urban parks in subtropical regions based on mosquito prevention and control [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 211-218. |
[5] | LI Jianhua, XIA Honglu, TANG Weiping, HUANG Han. Characteristics of fuel load distribution in typical subtropical forest types [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 57-64. |
[6] | LI Huizhi, GUAN Qingwei, ZHAO Jiahao, LI Junjie, WANG Lei, LI Fengfeng, ZUO Xingping, CHEN Bin. Effects of topography on the soil fertility quality in Quercus acutissima plantation [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 161-168. |
[7] | ZHU Jindi, WEI Xinliang, YANG Jingjing, ZHANG Jiyan. Effects of topographic factors on tree species diversity in subtropical coniferous and broad-leaved mixed forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 153-161. |
[8] |
GU Xu, TANG Yifan, SHEN Jianhua, ZHU Yongli.
Effects of |
[9] | WU Yejiao, GAO Yuan, CAO Chengliang, JIANG Yuji, LYU Lianfei, WU Wenlong, JIANG Jihong, ZHU Hong, LI Rongpeng. Community structure of phoD phosphate solubilizing bacteria in rhizosphere soil of different blueberry cultivars [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 95-102. |
[10] | JU Yilin, JI Yongjie, HUANG Jimao, ZHANG Wangfei. Inversion of forest aboveground biomass using combination of LiDAR and multispectral data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 58-68. |
[11] | ZHANG Guofei, YUE Cairong, LUO Hongbin, GU Lei, ZHU Bodong. Based polarization orientation angle compensation for Pinus kesiya var. langbianensis forest aboveground biomass estimation [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 185-192. |
[12] | LIAO Yining, GUO Sujuan, WANG Fangfang, MA Yali, LIU Yabin. Effects of combined application of organic and inorganic fertilizers on soil fertility and root functional traits in chestnut orchards [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 84-92. |
[13] | ZHAO Yinghui, GUO Xinlong, ZHEN Zhen. Estimation of aboveground biomass of natural secondary forests based on optical-ALS variable combination and non-parametric models [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 49-57. |
[14] | WANG Bing, ZHANG Pengjie, ZHANG Qiuliang. Characteristics of the soil aggregate and its organic carbon in different Larix gmelinii forest types [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(3): 15-24. |
[15] | ZHAO Xiaoya, GUAN Mengran, SUN Mengyao, WANG Zefu, XU Xiaoniu. Effects of nitrogen and phosphorus additions on litterfall production and nutrient dynamics in evergreen broad-leaved forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 55-62. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||