JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (1): 46-58.doi: 10.12302/j.issn.1000-2006.202310036
Previous Articles Next Articles
ZHANG Weixi1(), DING Mi1, SU Xiaohua1, LI Aiping2, WANG Xiaojiang2, YU Jinjin1, LI Zhenghong1, HUANG Qinjun1, DING Changjun1,*(
)
Received:
2023-10-31
Revised:
2023-12-15
Online:
2025-01-30
Published:
2025-01-21
Contact:
DING Changjun
E-mail:weixizhang@caf.ac.cn;changjunding@caf.ac.cn
CLC Number:
ZHANG Weixi, DING Mi, SU Xiaohua, LI Aiping, WANG Xiaojiang, YU Jinjin, LI Zhenghong, HUANG Qinjun, DING Changjun. Heterosis and drought resistance assessment of Populus simonii × P. nigra F1 hybrids based on growth traits and leaf anatomical structures[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 46-58.
Table 1
Mean and standard deviation for 4-6 years growth traits of different clones of F1 hybrids"
无性系 clone | 4年生 the 4th growth year | 5年生 the 5th growth year | 6年生 the 6th growth year | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
H/m | DBH/cm | H/m | DBH/cm | H/m | DBH/cm | |||||||
02-01 | 3.94±0.24 cdefghi | 3.55±0.15 ab | 5.13±0.13 defg | 4.83±0.20 abcdef | 6.78±0.20 cde | 6.53±0.33 bcd | ||||||
02-02 | 2.85±0.14 k | 2.23±0.67 e | 3.83±0.44 h | 2.75±0.62 j | 4.33±0.41 kl | 3.23±0.38 hi | ||||||
02-03 | 4.27±0.27 abcde | 3.87±0.72 a | 5.67±0.55 abcde | 5.58±1.16 abc | 7.17±0.53 abcd | 7.70±1.26 abc | ||||||
02-04 | 3.02±0.29 jk | 1.93±0.43 e | 3.73±0.15 h | 2.49±0.46 j | 4.03±0.16 kl | 2.87±0.42 i | ||||||
02-05 | 4.57±0.24 abcd | 3.95±0.30 a | 6.09±0.14 abc | 5.88±0.41 ab | 7.34±0.05 abc | 8.19±0.50 a | ||||||
02-06 | 4.45±0.29 abcde | 4.05±0.47 a | 5.96±0.05 abcd | 5.66±0.55 abc | 7.86±0.23 ab | 7.71±1.01 abc | ||||||
02-08 | 1.92±0.19 e | 0.88±0.22 f | 2.26±0.14 i | 1.11±0.11 k | 2.36±0.22 m | 1.33±0.21 j | ||||||
02-09 | 3.73±0.24 efghij | 3.37±0.21 abc | 5.23±0.16 def | 4.53±0.42 bcdefg | 6.66±0.35 cdef | 5.84±0.44 def | ||||||
02-10 | 4.12±0.32 abcdefgh | 3.58±0.37 ab | 5.32±0.35 cdef | 4.46±0.49 cdefgh | 6.50±0.41 cdef | 5.47±0.52 defg | ||||||
02-11 | 4.64±0.58 abc | 4.16±1.05 a | 6.20±0.82 ab | 5.73±1.34 abc | 7.87±0.85 ab | 8.02±1.91 ab | ||||||
02-12 | 4.60±0.16 abcd | 3.67±0.22 ab | 5.94±0.11 abcd | 4.80±0.68 abcdef | 7.34±0.14 abc | 6.32±0.87 cd | ||||||
02-13 | 4.22±0.58 abcdef | 3.22±0.93 abcd | 5.55±0.40 bcde | 4.91±1.21 abcde | 7.21±0.58 abcd | 6.78±1.32 abcd | ||||||
02-14 | 3.20±0.66 ijk | 2.37±0.95 de | 4.41±0.75 gh | 3.46±1.23 ghij | 5.39±0.54 hij | 4.62±1.01 fgh | ||||||
02-15 | 4.80±0.39 a | 4.03±0.35 a | 6.38±0.56 a | 5.92±0.72 a | 7.97±0.35 a | 7.73±0.86 abc | ||||||
02-16 | 4.48±0.72 abcde | 3.86±0.67 a | 5.93±0.71 abcd | 5.80±1.29 abc | 7.72±0.59 ab | 7.71±1.12 abc | ||||||
02-18 | 4.15±0.36 abcdefgh | 3.88±0.36 a | 5.58±0.24 abcde | 5.32±0.54 abcd | 7.38±0.21 abc | 7.56±0.79 abc | ||||||
02-19 | 3.43±0.78 hijk | 2.22±0.94 e | 4.64±0.95 fg | 3.22±1.26 hij | 5.52±1.33 ghij | 4.29±1.50 ghi | ||||||
02-20 | 4.70±0.30 ab | 3.34±0.24 abcd | 5.91±0.48 abcd | 4.62±0.55 abcdefg | 7.18±0.58 abcd | 5.90±0.89 def | ||||||
02-21 | 4.17±0.20 abcdefgh | 3.53±0.05 ab | 5.63±0.31 abcde | 4.96±0.29 abcde | 6.59±0.33 cdef | 6.23±0.54 cde | ||||||
02-22 | 4.61±0.39 abcd | 3.68±0.58 a | 5.64±0.37 abcde | 4.96±0.63 abcde | 6.83±0.36 cde | 6.27±0.56 cde | ||||||
02-23 | 4.48±0.27 abcde | 3.60±0.22 ab | 5.82±0.37 abcd | 5.04±0.23 abcde | 7.05±0.24 bcd | 6.24±0.17 cde | ||||||
02-24 | 4.20±0.14 abcdefg | 3.52±0.27 ab | 5.66±0.24 abcde | 4.92±0.42 abcde | 6.72±0.30 cdef | 5.94±0.68 def | ||||||
02-25 | 4.73±0.28 ab | 3.77±0.10 a | 5.86±0.37 abcd | 5.32±0.25 abcd | 7.21±0.33 abcd | 6.75±0.55 abcd | ||||||
02-26 | 4.00±0.36 bcdefgh | 3.25±0.58 abcd | 5.21±0.19 def | 4.55±0.66 bcdefg | 6.35±0.35 defg | 5.64±0.71 defg | ||||||
02-27 | 3.78±0.18 efghi | 3.33±0.20 abcd | 5.14±0.14 defg | 4.92±0.17 abcde | 6.36±0.19 defg | 6.30±0.34 cde | ||||||
02-28 | 3.25±0.33 ijk | 2.37±0.19 cde | 4.62±0.27 fg | 3.57±0.17 fghij | 5.04±0.33 ijk | 3.86±0.52 hi | ||||||
02-29 | 3.47±0.58 ghijk | 2.25±0.79 e | 5.14±0.58 defg | 3.76±0.73 efghij | 5.96±0.62 efgh | 4.72±0.92 efgh | ||||||
02-30 | 3.50±0.16 fghijk | 3.28±0.33 abcd | 4.90±0.08 efg | 4.68±0.34 abcdefg | 5.85±0.26 fghi | 5.74±0.60 defg | ||||||
02-31 | 3.86±0.42 defghi | 2.68±0.60 bcde | 5.19±0.32 defg | 4.15±0.70 defghi | 6.12±0.53 efgh | 5.47±0.93 defg | ||||||
02-32 | 3.45±0.18 hijk | 2.22±0.31 e | 4.58±0.20 fg | 2.98±0.23 ij | 4.98±0.08 jk | 3.67±0.33 hi | ||||||
均值mean | 3.94±0.74 | 3.17±0.90 | 5.22±0.90 | 4.48±1.26 | 6.38±1.25 | 5.78±1.73 |
Table 2
Variance analysis for 4-6 years growth traits of different clones of F1 hybrids"
树龄 tree age | 性状 trait | 平方和 sum of square | 自由度 degrees of freedom | 均方 mean square | F | P |
---|---|---|---|---|---|---|
4年生 the 4th growth year | H | 66.11 | 29 | 2.28 | 14.92 | <0.001 |
DBH | 91.32 | 29 | 3.15 | 11.28 | <0.001 | |
5年生 the 5th growth year | H | 105.98 | 29 | 3.65 | 20.33 | <0.001 |
DBH | 187.81 | 29 | 6.48 | 13.30 | <0.001 | |
6年生 the 6th growth year | H | 219.77 | 29 | 7.58 | 34.35 | <0.001 |
DBH | 382.07 | 29 | 13.17 | 19.26 | <0.001 |
Table 3
Genetic variation analysis for 4-6 years growth traits of different clones of F1 hybrids"
项目 item | 4年生 the 4th growth year | 5年生 the 5th growth year | 6年生 the 6th growth year | |||
---|---|---|---|---|---|---|
H/m | DBH/cm | H/m | DBH/cm | H/m | DBH/cm | |
平均值average | 3.94±0.74 | 3.17±0.90 | 5.22±0.90 | 4.48±1.26 | 6.38±1.25 | 5.78±1.73 |
变幅range | 1.68~5.36 | 0.60~5.60 | 2.08~7.40 | 1.02~7.64 | 2.11~9.07 | 1.10~10.80 |
变异系数/% CV | 18.72 | 28.27 | 17.28 | 28.22 | 19.64 | 29.87 |
重复力repeatability | 0.93 | 0.91 | 0.95 | 0.92 | 0.97 | 0.95 |
Table 4
Heterosis analysis for 4-6 years growth traits of different clones of F1 hybrids"
树龄 tree age | 性状 trait | 母本 female | 父本 male | 中亲值 MPV | 中亲优势 Hm | 高亲值 BPV | 超亲优势 Hb | 中亲优势率/% RHm | 超亲优势率/% RHb |
---|---|---|---|---|---|---|---|---|---|
4年生 the 4th growth year | H/m | 2.94 | 2.67 | 2.81 | 1.15** | 2.94 | 1.01** | 40.94 | 34.33 |
DBH/cm | 2.33 | 1.08 | 1.71 | 1.49** | 2.33 | 0.86** | 87.07 | 36.83 | |
5年生 the 5th growth year | H/m | 3.98 | 3.88 | 3.93 | 1.31** | 3.98 | 1.26** | 33.30 | 31.71 |
DBH/cm | 3.45 | 1.85 | 2.65 | 1.85** | 3.45 | 1.05** | 69.64 | 30.46 | |
6年生 the 6th growth year | H/m | 4.94 | 3.74 | 4.34 | 2.05** | 4.94 | 1.45** | 47.13 | 29.27 |
DBH/cm | 4.30 | 1.89 | 3.10 | 2.72** | 4.30 | 1.52** | 87.90 | 35.25 |
Table 5
Mean and standard deviation ofleaf anatomical structure of different clones of F1 hybrids"
无性系 clone | 叶片 厚度/μm leaf thickness | 角质层 厚度/μm cuticle thickness | 上表皮 厚度/μm upper epidermis thickness | 下表皮厚度/ μm lower epidermis thickness | 栅栏组织 厚度/μm thickness of palisade tissue | 海绵组织 厚度/μm thickness of spongy tissue | 栅海比 palisade to spongy ratio | 组织紧 密度/% compaction of leaf tissue | 组织疏松度/% porosity of leaf tissue |
---|---|---|---|---|---|---|---|---|---|
02-01 | 266.45±10.34 efghi | 6.46±1.04 a | 11.90±0.90 a | 12.44±0.97 a | 116.69±5.89 bcd | 117.14±6.86 ij | 1.00±0.04 abc | 43.81±1.78 ab | 43.94±1.24 fghijkl |
02-02 | 271.96±18.98 defg | 3.99±0.69 no | 11.89±0.98 a | 9.42±1.01 cd | 115.21±7.89 bcdef | 125.69±10.57 defgh | 0.92±0.05 efghi | 42.39±1.43 bcdef | 46.19±1.52 bcd |
02-03 | 264.38±7.61 ghi | 5.28±0.98 cde | 12.24±1.00 a | 10.58±1.56 b | 109.54±7.18 ghijk | 116.84±9.42 ij | 0.94±0.07 cdefgh | 41.41±2.09 fghi | 44.15±2.73 fghijk |
02-04 | 260.13±10.63 hij | 4.07±0.39 mno | 10.10±0.88 cdefghi | 9.92±0.99 bc | 99.94±4.59 no | 127.25±8.59 cde | 0.79±0.05 m | 38.44±1.42 m | 48.89±1.92 a |
02-05 | 268.22±13.87 efgh | 6.65±0.67 a | 10.04±0.95 cdefghi | 10.47±1.30 b | 112.29±5.87 defghi | 120.26±9.78 fghi | 0.94±0.06 defgh | 41.89±1.48 defgh | 44.79±1.81 defghi |
02-06 | 269.28±13.04 defgh | 5.70±0.59 bc | 10.55±1.43 cde | 10.40±1.11 b | 118.39±5.61 bc | 117.99±6.54 ij | 1.01±0.06 ab | 44.00±1.82 a | 43.82±1.36 ghijkl |
02-08 | 232.29±5.14 mn | 3.71±0.36 o | 8.54±1.13 lm | 7.77±1.03 ijklm | 92.86±6.01 p | 108.94±6.71 k | 0.86±0.10 jkl | 39.97±2.32 ijkl | 46.92±2.99 bc |
02-09 | 266.33±18.30 efghi | 4.27±0.56 klmn | 10.35±1.40 cdef | 9.34±1.08 cd | 114.73±8.11 bcdefg | 115.92±9.57 ij | 0.99±0.07 abcd | 43.10±1.68 abcd | 43.52±1.83 hijkl |
02-10 | 266.68±4.16 efghi | 4.02±0.54 no | 10.66±1.04 cd | 8.94±1.07 defg | 115.39±2.71 bcdef | 119.64±4.00 fghi | 0.97±0.03 bcde | 43.28±1.08 abcd | 44.86±1.06 defghi |
02-11 | 265.07±6.57 fghi | 4.88±0.73 efghi | 8.82±0.99 klm | 7.57±0.95 jklm | 106.47±7.92 jklm | 119.92±6.03 fghi | 0.89±0.09 hij | 40.14±2.40 ijkl | 45.25±2.30 defg |
02-12 | 256.94±9.80 ij | 4.90±0.70 defghi | 8.38±1.23 m | 7.19±0.84 m | 100.65±8.12 no | 121.65±8.37 efghi | 0.83±0.10 klm | 39.16±2.61 klm | 47.35±2.71 b |
02-13 | 237.26±4.73 m | 4.72±0.75 ghijk | 8.56±1.06 lm | 7.43±0.55 lm | 101.93±3.73 mno | 101.40±3.14 l | 1.01±0.05 ab | 42.97±1.66 abcde | 42.73±0.71 kl |
02-14 | 270.45±5.47 defg | 4.22±0.53 lmn | 9.20±0.96 ijklm | 7.73±1.11 ijklm | 107.44±6.86 ijkl | 132.09±8.04 bc | 0.82±0.08 lm | 39.72±2.25 jklm | 48.84±2.84 a |
02-15 | 264.38±13.63 ghi | 5.88±0.56 b | 9.55±1.25 fghijk | 8.00±1.19 hijklm | 108.68±5.78 hijkl | 117.43±11.02 ij | 0.93±0.07 efgh | 41.13±1.61 fghij | 44.34±2.28 efghijk |
02-16 | 239.38±16.41 lm | 4.77±0.55 fghij | 9.49±0.91 fghijk | 7.34±0.64 m | 93.89±9.96 p | 107.07±10.69 k | 0.88±0.11 hijk | 39.19±2.63 klm | 44.69±2.78 defghij |
02-18 | 278.77±12.80 cd | 5.70±0.83 bc | 10.17±1.55 cdefgh | 8.38±0.79 fghij | 115.32±6.96 bcdef | 125.84±8.85 defg | 0.92±0.07 efghi | 41.37±1.56 fghi | 45.13±2.00 defgh |
02-19 | 287.52±8.01 b | 4.64±0.34 ghijkl | 9.36±1.35 hijkl | 8.37±1.11 fghij | 115.82±7.28 bcde | 134.72±5.26 b | 0.86±0.08 ijkl | 40.27±2.01 ijkl | 46.89±2.30 bc |
02-20 | 266.05±18.62 efghi | 5.29±0.38 cde | 10.33±1.31 cdef | 8.66±1.27 defgh | 110.13±5.73 fghij | 121.61±17.00 efghi | 0.92±0.12 efghi | 41.52±2.72 efghi | 45.52±3.32 cdef |
02-21 | 272.90±16.09 defg | 4.51±0.39 hijklm | 10.79±1.10 bc | 9.20±1.07 cde | 115.68±12.10 bcde | 120.43±6.94 fghi | 0.96±0.10 bcdef | 42.31±2.51 bcdefg | 44.19±2.21 fghijk |
02-22 | 246.67±12.90 kl | 5.07±0.74 defg | 9.85±1.36 defghij | 7.44±0.68 lm | 103.64±7.06 lmno | 108.03±8.22 k | 0.96±0.09 bcde | 42.06±2.64 defgh | 43.78±2.06 ghijkl |
02-23 | 275.14±6.04 de | 4.40±0.50 jklmn | 11.52±1.40 ab | 9.14±1.46 def | 118.52±3.69 bc | 119.56±4.72 ghi | 0.99±0.06 abcd | 43.09±1.37 abcd | 43.46±1.47 ijkl |
02-24 | 265.43±5.50 efghi | 4.96±0.47 defgh | 10.64±0.87 cd | 8.50±1.30 efghi | 115.81±8.09 bcde | 112.50±4.65 jk | 1.03±0.11 a | 43.62±2.79 abc | 42.40±1.98 l |
02-25 | 264.75±13.39 ghi | 5.90±0.68 b | 9.69±1.23 efghijk | 7.53±1.08 klm | 111.18±3.95 efghij | 116.43±8.97 ij | 0.96±0.07 bcdefg | 42.05±1.54 defgh | 43.94±1.79 fghijkl |
02-26 | 284.88±11.78 bc | 4.86±0.45 efghi | 11.53±1.14 ab | 8.31±1.12 ghijk | 116.66±8.64 bcd | 129.59±7.36 bcd | 0.90±0.08 fghij | 40.93±2.13 fghij | 45.50±1.97 cdef |
02-27 | 271.89±12.04 defg | 5.17±0.47 def | 10.30±0.84 cdefg | 8.17±0.79 ghijkl | 110.31±3.07 fghij | 125.03±7.85 defgh | 0.89±0.06 hijk | 40.62±1.43 hijk | 45.97±1.70 bcde |
02-28 | 251.15±10.44 jk | 4.51±0.28 ijklm | 10.68±1.30 cd | 8.46±1.15 efghi | 104.35±7.64 klmn | 108.56±6.25 k | 0.96±0.09 bcde | 41.52±1.83 efghi | 43.26±2.53 ijkl |
02-29 | 266.10±14.94 efghi | 4.11±0.27 mno | 9.48±0.91 fghijk | 7.95±0.89 hijklm | 108.40±6.38 hijkl | 120.47±12.42 fghi | 0.91±0.10 efghij | 40.79±2.21 ghij | 45.20±2.89 defg |
02-30 | 274.08±17.73 defg | 4.51±0.56 ijklm | 9.41±1.12 ghijk | 8.19±0.93 ghijkl | 113.27±6.69 cdefgh | 126.27±11.28 cdef | 0.90±0.06 ghij | 41.36±1.22 fghi | 46.03±1.94 bcd |
02-31 | 266.09±13.20 efghi | 4.68±0.46 ghijk | 9.69±1.00 efghijk | 8.25±0.82 ghijkl | 107.99±5.45 hijkl | 121.12±7.65 efghi | 0.89±0.05 hij | 40.61±1.39 hijk | 45.50±1.28 cdef |
02-32 | 274.81±11.70 def | 4.61±0.54 hijkl | 9.92±0.87 cdefghij | 8.22±1.11 ghijkl | 119.02±5.58 b | 119.08±8.39 hi | 1.00±0.07 ab | 43.32±1.31 abcd | 43.31±1.93 ijkl |
Table 6
Variance analysis of leaf anatomical structure of different clones"
性状 trait | 自由度 df | 均方 MS | F | P |
---|---|---|---|---|
叶片厚度 leaf thickness | 29 | 2 925.602 | 19.447 | <0.001 |
角质层厚度 cuticle thickness | 29 | 9.466 | 26.750 | <0.001 |
上表皮厚度 upper epidermis thickness | 29 | 18.342 | 14.288 | <0.001 |
下表皮厚度 lower epidermis thickness | 29 | 25.260 | 22.610 | <0.001 |
栅栏组织厚度 thickness of palisade tissue | 29 | 896.639 | 19.479 | <0.001 |
海绵组织厚度 thickness of spongy tissue | 29 | 1 027.543 | 13.826 | <0.001 |
栅海比 palisade to spongy ratio | 29 | 666.859 | 11.129 | <0.001 |
叶片组织紧密度 compaction of leaf tissue | 29 | 39.530 | 10.272 | <0.001 |
叶片组织疏松度 porosity of leaf tissue | 29 | 47.405 | 10.376 | <0.001 |
Table 7
Variance analysis of leaf anatomical structure of different clones"
性状 trait | 叶片厚度/μm leaf thickness | 角质层 厚度/μm cuticle thickness | 上表皮 厚度/μm upper epidermis thickness | 下表皮 厚度/μm lower epidermis thickness | 栅栏组织 厚度/μm thickness of palisade tissue | 海绵组织 厚度/μm thickness of spongy tissue | 栅海比 palisade to spongy ratio | 叶片组织 紧密度/% compaction of leaf tissue | 叶片组织 疏松度/% porosity of leaf tissue |
---|---|---|---|---|---|---|---|---|---|
平均值average | 264.85±17.31 | 4.88±0.92 | 10.12±1.48 | 8.64±1.55 | 110.01±9.58 | 119.28±11.21 | 92.78±9.62 | 41.53±2.40 | 45.01±2.62 |
变幅variable amplitude | 217.36~305.74 | 2.95~8.39 | 6.50~14.20 | 5.91~13.66 | 79.14~138.21 | 89.23~150.02 | 65.30~121.37 | 34.18~48.01 | 38.02~54.73 |
变异系数/% CV | 6.54 | 18.82 | 14.66 | 17.99 | 8.71 | 9.40 | 10.37 | 5.78 | 5.82 |
重复力repeatability | 0.95 | 0.96 | 0.93 | 0.96 | 0.95 | 0.93 | 0.91 | 0.90 | 0.90 |
Table 8
Heterosis analysis of leaf anatomical structure of different clones"
项目 item | 叶片 厚度/μm leaf thickness | 角质层 厚度/μm cuticle thickness | 上表皮 厚度/μm upper epidermis thickness | 下表皮 厚度/μm lower epidermis thickness | 栅栏组织 厚度/μm thickness of palisade tissue | 海绵组织 厚度/μm thickness of spongy tissue | 栅海比/% palisade to spongy ratio | 叶片组织 紧密度/% compaction of leaf tissue | 叶片组织 疏松度/% porosity of leaf tissue |
---|---|---|---|---|---|---|---|---|---|
母本female | 309.95±18.90 | 4.80±0.49 | 9.97±1.33 | 8.49±0.64 | 126.43±11.38 | 145.72±7.65 | 87.76±6.31 | 40.76±2.10 | 47.07±1.88 |
父本male | 225.07±11.91 | 3.96±0.43 | 10.64±1.19 | 8.47±1.09 | 92.14±4.18 | 97.12±8.13 | 95.33±7.12 | 40.98±1.62 | 43.10±1.79 |
中亲值MPV | 267.51 | 4.38 | 10.31 | 8.48 | 109.28 | 121.42 | 91.04 | 40.87 | 45.08 |
中亲优势Hm | -3.01 | 0.52** | -0.19 | 0.15 | 0.37 | -2.14** | 1.74 | 0.58* | -0.01 |
高亲值BPV | 309.95 | 4.80 | 10.64 | 8.49 | 126.43 | 145.72 | 95.33 | 40.98 | 47.07 |
超高亲优势Hb | -45.10** | 0.08 | -0.52** | 0.15 | -16.42** | -26.44** | -2.55* | 0.55 | -2.06** |
中亲优势率/% RHm | -1.12 | 11.86 | -1.80 | 1.75 | 0.33 | -1.76 | 1.91 | 1.42 | -0.03 |
超高亲优势率/% RHb | -14.55 | 1.67 | -4.89 | 1.77 | -12.99 | -18.14 | -2.67 | 1.34 | -4.38 |
Table 9
Correlation analysis betweenannual growth and anatomical structure indexes of 30 poplar leaves"
指标 index | 年均高 生长量 average annual growth of height | 年均胸径 生长量 average annual growth of dbh | 叶片厚度 leaf thickness | 角质层 厚度 cuticle thickness | 上表皮 厚度 upper epidermis thickness | 下表皮 厚度 lower epidermis thickness | 栅栏组织 厚度 thickness of palisade tissue | 海绵组织 厚度 thickness of spongy tissue | 栅海比 palisade to spongy ratio | 叶片组织 紧密度 compaction of leaf tissue | 叶片组织 疏松度 porosity of leaf tissue |
---|---|---|---|---|---|---|---|---|---|---|---|
年均高生长量 average annual growth of height | 1.000 | ||||||||||
年均胸径生长量 average annual growth of DBH | 0.915** | 1.000 | |||||||||
叶片厚度 leaf thickness | 0.155 | 0.056 | 1.000 | ||||||||
角质层厚度 cuticle thickness | 0.587** | 0.713** | 0.157 | 1.000 | |||||||
上表皮厚度 upper epidermis thickness | 0.049 | -0.026 | 0.421* | 0.166 | 1.000 | ||||||
下表皮厚度 lower epidermis thickness | 0.246 | 0.099 | 0.841** | 0.254 | 0.587** | 1.000 | |||||
栅栏组织厚度 palisade tissue thickness | -0.113 | -0.156 | 0.827** | -0.064 | 0.141 | 0.446* | 1.000 | ||||
海绵组织厚度 spongy tissue thickness | 0.073 | 0.077 | 0.288 | 0.368* | 0.713** | 0.458* | 0.137 | 1.000 | |||
栅海比 palisade to spongy ratio | 0.344 | 0.240 | 0.022 | 0.303 | 0.416* | 0.534** | -0.516** | 0.298 | 1.000 | ||
叶片组织紧密度 compaction of leaf tissue | 0.245 | 0.112 | 0.182 | 0.259 | 0.489** | 0.685** | -0.301 | 0.435* | 0.941** | 1.000 | |
叶片组织疏松度 porosity of leaf tissue | -0.425* | -0.368* | 0.116 | -0.334 | -0.313 | -0.342 | 0.653** | -0.138 | -0.942** | -0.776** | 1.000 |
Table 10
Principal component load matrix among anatomical structure indexes of 30 poplar leaves"
指标 index | 主成分1 PC1 | 主成分2 PC2 |
---|---|---|
叶片组织紧密度 compaction of leaf tissue | 0.935 | -0.087 |
栅海比 palisade/spongy | 0.932 | -0.325 |
叶片组织疏松度 porosity of leaf tissue | -0.831 | 0.504 |
栅栏组织厚度 palisade tissue thickness | 0.694 | 0.547 |
上表皮厚度 upper epidermis thickness | 0.660 | 0.503 |
下表皮厚度 lower epidermis thickness | 0.577 | 0.545 |
角质层厚度 cuticle thickness | 0.445 | 0.075 |
海绵组织厚度 spongy tissue thickness | -0.287 | 0.892 |
Table 11
Comprehensive evaluation of drought resistance in 30 poplar clones"
无性系 clone | 隶属函数值 membership function value | 均值 mean | 抗旱能力 排序 sort drought tolerance | ||||||
---|---|---|---|---|---|---|---|---|---|
年均高 生长量 average annual growth of heigh | 年均胸径 生长量 average annual growth of DBH | 角质层 厚度 cuticle thickness | 叶片组织 疏松度 porosity of leaf tissue | 海绵组织厚度 thickness of spongy tissue | 栅海比 palisade to spongy ratio | 叶片组织 紧密度 compaction of leaf tissue | |||
02-06 | 1.060 71 | 0.824 24 | 0.677 37 | 0.780 91 | 0.502 16 | 0.888 40 | 1.000 00 | 0.819 11 | 1 |
02-01 | 0.857 14 | 0.618 18 | 0.935 23 | 0.762 39 | 0.527 51 | 0.854 64 | 0.964 65 | 0.788 53 | 2 |
02-05 | 0.832 14 | 1.000 00 | 1.000 00 | 0.631 65 | 0.433 94 | 0.609 65 | 0.620 06 | 0.732 49 | 3 |
02-24 | 0.635 71 | 0.500 00 | 0.464 77 | 0.787 90 | 0.667 03 | 1.000 00 | 0.931 94 | 0.712 48 | 4 |
02-03 | 0.878 57 | 0.875 76 | 0.535 67 | 0.729 98 | 0.536 64 | 0.624 55 | 0.534 87 | 0.673 72 | 5 |
02-13 | 0.821 43 | 0.518 18 | 0.406 15 | 0.237 50 | 1.000 00 | 0.890 88 | 0.815 29 | 0.669 92 | 6 |
02-16 | 0.975 00 | 0.836 36 | 0.740 11 | 0.700 64 | 0.830 02 | 0.387 32 | 0.135 29 | 0.657 82 | 7 |
02-20 | 0.996 43 | 0.830 30 | 0.676 14 | 0.579 88 | 0.393 38 | 0.538 12 | 0.553 97 | 0.652 60 | 8 |
02-22 | 0.728 57 | 0.490 91 | 0.536 97 | 0.518 90 | 0.801 22 | 0.720 43 | 0.650 75 | 0.635 39 | 9 |
02-10 | 0.889 29 | 0.463 64 | 0.192 12 | 0.828 21 | 0.452 48 | 0.724 07 | 0.869 86 | 0.631 38 | 10 |
02-23 | 0.707 14 | 0.533 33 | 0.273 14 | 0.724 51 | 0.454 94 | 0.838 42 | 0.835 92 | 0.623 91 | 11 |
02-25 | 0.760 71 | 0.515 15 | 0.233 49 | 0.837 25 | 0.549 04 | 0.699 15 | 0.648 87 | 0.606 24 | 12 |
02-18 | 1.000 00 | 0.881 82 | 0.361 30 | 0.646 47 | 0.266 32 | 0.536 55 | 0.526 28 | 0.602 68 | 13 |
02-28 | 0.682 14 | 0.439 39 | 0.393 15 | 0.522 62 | 0.785 31 | 0.720 31 | 0.553 60 | 0.585 22 | 14 |
02-32 | 0.682 14 | 0.460 61 | 0.270 85 | 0.440 94 | 0.469 33 | 0.877 67 | 0.877 44 | 0.582 71 | 15 |
02-27 | 0.728 57 | 0.618 18 | 0.746 92 | 0.762 85 | 0.290 66 | 0.397 40 | 0.391 91 | 0.562 36 | 16 |
02-26 | 0.742 86 | 0.448 48 | 0.427 31 | 1.000 00 | 0.153 84 | 0.469 50 | 0.448 24 | 0.527 18 | 17 |
02-29 | 0.764 29 | 0.615 15 | 0.497 78 | 0.449 25 | 0.427 69 | 0.491 32 | 0.422 26 | 0.523 96 | 18 |
02-12 | 0.996 43 | 0.884 85 | 0.399 80 | 0.559 91 | 0.392 21 | 0.181 84 | 0.130 27 | 0.506 47 | 19 |
02-14 | 0.910 71 | 0.793 94 | 0.343 19 | 0.948 63 | 0.078 77 | 0.119 82 | 0.230 27 | 0.489 33 | 20 |
02-08 | 0.650 00 | 0.560 61 | 0.331 72 | 0.521 83 | 0.773 76 | 0.285 09 | 0.275 77 | 0.485 54 | 21 |
02-21 | 0.589 29 | 0.342 42 | 0.314 95 | 0.307 68 | 0.428 77 | 0.709 70 | 0.696 09 | 0.484 13 | 22 |
02-31 | 0.732 14 | 0.463 64 | 0.135 27 | 0.567 99 | 0.408 24 | 0.431 16 | 0.389 85 | 0.446 90 | 23 |
02-30 | 0.482 14 | 0.166 67 | 0.271 93 | 0.867 27 | 0.253 46 | 0.460 52 | 0.525 16 | 0.432 45 | 24 |
02-11 | 0.692 86 | 0.287 88 | 0.105 85 | 0.621 08 | 0.444 24 | 0.421 15 | 0.306 02 | 0.411 30 | 25 |
02-15 | 0.625 00 | 0.396 97 | 0.173 53 | 0.006 49 | 0.518 84 | 0.582 93 | 0.484 87 | 0.398 38 | 26 |
02-02 | 0.371 43 | 0.018 18 | 0.094 59 | 0.415 98 | 0.270 99 | 0.536 16 | 0.709 68 | 0.345 29 | 27 |
02-09 | 0.000 00 | -0.148 48 | 0.000 00 | 0.303 63 | 0.564 27 | 0.838 08 | 0.838 21 | 0.342 24 | 28 |
02-19 | 0.389 29 | 0.154 55 | 0.307 59 | 0.860 36 | 0.000 00 | 0.303 46 | 0.329 00 | 0.334 89 | 29 |
02-04 | 0.203 57 | 0.000 00 | 0.124 02 | 0.000 00 | 0.224 06 | 0.000 00 | 0.000 00 | 0.078 81 | 30 |
[1] | ZHANG T Q, ZHANG W X, DING C J, et al. A breeding strategy for improving drought and salt tolerance of poplar based on CRISPR/Cas9[J]. Plant Biotechnol J, 2023, 21(11):2160-2162.DOI: 10.1111/pbi.14147. |
[2] | 苏晓华, 丁昌俊, 马常耕. 我国杨树育种的研究进展及对策[J]. 林业科学研究, 2010, 23(1):31-37. |
SU X H, DING C J, MA C G. Research progress and strategies of poplar breeding in China[J]. For Res, 2010, 23(1):31-37. | |
[3] | 丁昌俊, 张伟溪, 高暝, 等. 不同生长势美洲黑杨转录组差异分析[J]. 林业科学, 2016, 52(3):47-58. |
DING C J, ZHANG W X, GAO M, et al. Analysis of transcriptome differences among Populus deltoides with different growth potentials[J]. Sci Silvae Sin, 2016, 52(3):47-58.DOI: 10.11707/j.1001-7488.20160306. | |
[4] | 陈晓杰, 杨保安, 范家霖, 等. 小麦杂种优势利用研究进展[J]. 种子, 2022, 41(1): 66-73. |
CHEN X J, YANG B A, FAN J L, et al. Advancesin utilization of heterosis in wheat[J]. Seed, 2022, 41(1): 66-73. DOI: 10.16590/j.cnki.1001-4705.2022.01.066. | |
[5] | 康向阳. 林木遗传育种研究进展[J]. 南京林业大学学报(自然科学版), 2020, 44(3):1-10. |
KANG X Y. Research progress of forest genetics and tree breeding[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):1-10.DOI: 10.3969/j.issn.1000-2006.202002033. | |
[6] | 陈赢男, 韦素云, 曲冠正, 等. 现代林木育种关键核心技术研究现状与展望[J]. 南京林业大学学报(自然科学版), 2022, 46(6):1-9. |
CHEN Y N, WEI S Y, QU G Z, et al. The key and core technologies for accelerating the tree breeding process[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(6):1-9.DOI: 10.12302/j.issn.1000-2006.202206020. | |
[7] | 王瑞文, 黄国伟, 李振芳, 等. 黑杨派杨树不同杂交组合F1代遗传分析及苗期选择[J]. 中国农学通报, 2017, 33(10):48-52. |
WANG R W, HUANG G W, LI Z F, et al. F1 genetic analysis and seedling selection of different cross combinations of black poplar[J]. Chin Agric Sci Bull, 2017, 33(10):48-52. | |
[8] | 杜克兵, 许林, 沈宝仙, 等. 黑杨派杨树杂交子代的遗传分析及苗期选择[J]. 华中农业大学学报, 2009, 28(5):624-630. |
DU K B, XU L, SHEN B X, et al. Genetic analysis and seedling selection of the poplar progenies of aigeiros section[J]. J Huazhong Agric Univ, 2009, 28(5):624-630.DOI: 10.3321/j.issn:1000-2421.2009.05.024. | |
[9] | 高暝, 黄秦军, 丁昌俊, 等. 美洲黑杨及其杂种F1不同生长势无性系叶片δ13C和氮素利用效率[J]. 林业科学, 2013, 49(8):51-57. |
GAO M, HUANG Q J, DING C J, et al. Foliar δ13C and nitrogen use efficient of Populus deltoides and the different growth vigor F1 hybrid clones[J]. Sci Silvae Sin, 2013, 49(8):51-57.DOI: 10.11707/j.1001-7488.20130808. | |
[10] | 高暝, 丁昌俊, 苏晓华, 等. 美洲黑杨及其杂种F1无性系光合特性的研究[J]. 林业科学研究, 2014, 27(6):721-728. |
GAO M, DING C J, SU X H, et al. Comparison of photosynthetic characteristics of Populus deltoides and their F1 hybrid clones[J]. For Res, 2014, 27(6):721-728. | |
[11] | 孙佩, 姬慧娟, 张亚红, 等. 丹红杨×通辽1号杨杂交子代苗期抗旱性初步评价[J]. 植物遗传资源学报, 2019, 20(2):297-308. |
SUN P, JI H J, ZHANG Y H, et al. Preliminary evaluation of drought resistance for Populus deltoides ‘Danhong’ × P.simonii ‘Tongliao1’ hybrid progenies at the seedling stage[J]. J Plant Genet Resour, 2019, 20(2):297-308.DOI: 10.13430/j.cnki.jpgr.20180717001. | |
[12] | 周志春, 金国庆, 秦国峰, 等. 马尾松纸浆材重要经济性状配合力及杂种优势分析[J]. 林业科学, 2004, 40(4):52-57. |
ZHOU Z C, JIN G Q, QIN G F, et al. Analysis on combining ability and heterosis of main economic traits of Pinus massoniana for pulp production[J]. Sci Silvae Sin, 2004, 40(4):52-57.DOI: 10.3321/j.issn:1001-7488.2004.04.009. | |
[13] | 沈乐, 徐建民, 李光友, 等. 尾叶桉与巨桉杂种F1代生长性状遗传分析[J]. 林业科学, 2019, 55(7):68-76. |
SHEN L /Y, XU J M, LI G Y, et al. Genetic parameters for growth traits in Eucalyptus urophylla × E. grandis F1 hybrids[J]. Sci Silvae Sin, 2019, 55(7):68-76.DOI: 10.11707/j.1001-7488.20190707. | |
[14] | 贾庆彬, 刘庚, 赵佳丽, 等. 红松半同胞家系生长性状变异分析与优良家系选择[J]. 南京林业大学学报(自然科学版), 2022, 46(2): 109-116. |
JIA Q B, LIUG, ZHAO J L, et al. Variation analyses of growth traits in half-sib families of Korean pine and superior families selection[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(2): 109-116. DOI:10.12302/j.issn.1000-2006.202107040. | |
[15] | 王云鹏, 张蕊, 周志春, 等. 10年生木荷生长和材性性状家系变异及选择[J]. 南京林业大学学报(自然科学版), 2020, 44(5):85-92. |
WANG Y P, ZHANG R, ZHOU Z C, et al. A variation and selection of growth and wood traits for 10-year-old Schima superba[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(5):85-92.DOI: 10.3969/j.issn.1000-2006.202003086. | |
[16] | 吕义, 刘扬, 方升佐, 等. 南方型杨树无性系间生长性状和木材材性的遗传差异[J]. 南京林业大学学报(自然科学版), 2018, 42(6):20-26. |
LÜ Y, LIU Y, FANG S Z, et al. Genetic variation in growth and wood properties for southern type poplar clones[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(6):20-26.DOI: 10.3969/j.issn.1000-2006.201804024. | |
[17] | 张庆源, 田野, 王淼, 等. 美洲黑杨与青杨杂交F1 代苗期表型性状的分化及其类型划分[J]. 南京林业大学学报(自然科学版), 2022, 46(5): 40-48. |
ZHANG Q Y, TIAN Y, WANG M, et al. Phenotypic traits differentiations and classifications of the F1 hybrid progenies of Populus deltoides × P. cathayana at the seedling stage[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(5): 40-48. DOI:10.12302/j.issn.1000-2006.202104031. | |
[18] | BOSABALIDIS A M, KOFIDIS G. Comparative effects of drought stress on leaf anatomy of two olive cultivars[J]. Plant Sci, 2002, 163(2):375-379.DOI: 10.1016/s0168-9452(02)00135-8. |
[19] | FISCHER U, POLLE A. Populus responses to abiotic stress[M]//Genetics and Genomics of Populus. New York: Springer, 2009:225-246.DOI: 10.1007/978-1-4419-1541-2_11. |
[20] | MUNTOREANU T G, DA SILVA C R, MELO-DE-PINNA G F. Comparative leaf anatomy and morphology of some neotropical Rutaceae:Pilocarpus Vahl and related genera[J]. Plant Syst Evol, 2011, 296(1):87-99.DOI: 10.1007/s00606-011-0478-3. |
[21] | 常英俏, 徐文远, 穆立蔷, 等. 干旱胁迫对3种观赏灌木叶片解剖结构的影响及抗旱性分析[J]. 东北林业大学学报, 2012, 40(3):36-40. |
CHANG Y Q, XU W Y, MU L Q, et al. Effects of drought stress on anatomical structure of leaves of three species of shrubs and their drought resistances[J]. J Northeast For Univ, 2012, 40(3):36-40.DOI: 10.3969/j.issn.1000-5382.2012.03.010. | |
[22] | ENNAJEH M, VADEL A M, COCHARD H, et al. Comparative impacts of water stress on the leaf anatomy of a drought-resistant and a drought-sensitive olive cultivar[J]. J Hortic Sci Biotechnol, 2010, 85(4):289-294.DOI: 10.1080/14620316.2010.11512670. |
[23] | BOUGHALLEB F, HAJLAOUI H. Physiological and anatomical changes induced by drought in two olive cultivars (cv. Zalmati and Chemlali)[J]. Acta Physiol Plant, 2011, 33(1):53-65.DOI: 10.1007/s11738-010-0516-8. |
[24] | 于海燕, 胡潇予, 何春霞, 等. 文冠果不同种源叶片结构对水分胁迫的差异性响应[J]. 北京林业大学学报, 2019, 41(1): 57-63. |
YU H Y, HU X Y, HE C X, et al. Differential response of water stress on leaf morphological anatomical structures of varied provenances Xanthocera sorbifolium[J]. J Beijing For Univ, 2019, 41(1) : 57-63.DOI: 10.13332/j.1000-1522.201800312. | |
[25] | 曹林青, 钟秋平, 罗帅, 等. 干旱胁迫下油茶叶片结构特征的变化[J]. 林业科学研究, 2018, 31(3):136-143. |
CAO L Q, ZHONG Q P, LUO S, et al. Variation in leaf structure of Camellia oleifera under drought stress[J]. For Res, 2018, 31(3):136-143.DOI: 10.13275/j.cnki.lykxyj.2018.03.018. | |
[26] | 何凤, 杜红岩, 刘攀峰, 等. 干旱胁迫对杜仲叶片结构特征的影响[J]. 植物研究, 2021, 41(6): 947-956. |
HE F, DU H Y, LIU P F, et al. Effects of drought stress on leaf structure of Eucommia ulmoides[J]. Bulletin of Botanical Research, 2021, 41(6):947-956. DOI: 10.7525/j.issn.1673-5102.2021.06.013. | |
[27] | 郭文文, 卓么草, 周尧治. 西藏高原硬叶柳叶片结构对寒旱环境的适应机制[J]. 西北植物学报, 2019, 39(5):784-790. |
GUO W W, ZHUO M C, ZHOU Y Z. The Salix sclerophylla leaves to adapt to the cold and drought environment on the Tibetan Plateau[J]. Acta Bot Boreali Occidentalia Sin, 2019, 39(5):784-790.DOI: 10.7606/j.issn.1000-4025.2019.05.0784. | |
[28] | 马红英, 吕小旭, 计雅男, 等. 17种锦鸡儿属植物叶片解剖结构及抗旱性分析[J]. 水土保持研究, 2020, 27(1):340-346,352. |
MA H Y, LÜ X X, JI Y N, et al. Leaf anatomical structure and drought resistance of 17 Caragana species[J]. Res Soil Water Conserv, 2020, 27(1):340-346,352. | |
[29] | 范志霞, 陈越悦, 付荷玲. 成都地区10种园林灌木叶片结构与抗旱性关系研究[J]. 植物科学学报, 2019, 37(1):70-78. |
FAN Z X, CHEN Y Y, FU H L. Study on drought resistance and leaf structure in 10 species of garden shrubs in Chengdu[J]. Plant Sci J, 2019, 37(1):70-78.DOI: 10.11913/PSJ.2095-0837.2019.10070. | |
[30] | 王烟霞, 樊军锋, 程玮哲, 等. 基于叶片解剖结构的12个杨树无性系抗旱性分析[J]. 西北农林科技大学学报(自然科学版), 2021, 49(11):147-154. |
WANG Y X, FAN J F, CHENG W Z, et al. Drought resistances analysis of 12 poplar clones based on leaf anatomical structures[J]. J Northwest A & F Univ (Nat Sci Ed), 2021, 49(11):147-154.DOI: 10.13207/j.cnki.jnwafu.2021.11.018. | |
[31] | 曹佳乐. 银白杨×毛白杨新杂种无性系抗寒性与叶片旱生结构研究[D]. 杨凌: 西北农林科技大学, 2016. |
CAO J L. Study on cold resistance and leaf xerophytic structure of new hybrid clones of Populus tomentosa × Populus tomentosa[D]. Yangling: Northwest A & F University, 2016. | |
[32] | 黄绢, 陈存, 张伟溪, 等. 干旱胁迫对转JERF36银中杨苗木叶片解剖结构及光合特性的影响[J]. 林业科学, 2017, 53(5):8-15. |
HUANG J, CHEN C, ZHANG W X, et al. Effects of drought stress on anatomical structure and photosynthetic characteristics of transgenic JERF36 Populus alba × P.berolinensis seedling leaves[J]. Sci Silvae Sin, 2017, 53(5):8-15.DOI: 10.11707/j.1001-7488.20170502. | |
[33] | 丁昌俊, 黄秦军, 张冰玉, 等. 北方型美洲黑杨不同无性系重要性状评价[J]. 林业科学研究, 2016, 29(3):331-339. |
DING C J, HUANG Q J, ZHANG B Y, et al. Evaluation of important traits of different clones of north-typed Populus deltoides[J]. For Res, 2016, 29(3):331-339.DOI: 10.3969/j.issn.1001-1498.2016.03.004. | |
[34] | 刘红茹, 冯永忠, 王得祥, 等. 延安城区10种阔叶园林植物叶片结构及其抗旱性评价[J]. 西北植物学报, 2012, 32(10):2053-2060. |
LIU H R, FENG Y Z, WANG D X, et al. Drought resistance evaluation and leaf structures of ten species of broad-leaved ornamental plants in Yan’an urban area[J]. Acta Bot Boreali Occidentalia Sin, 2012, 32(10):2053-2060.DOI: 10.3969/j.issn.1000-4025.2012.10.019. | |
[35] | 朱栗琼, 李吉跃, 招礼军. 六种阔叶树叶片解剖结构特征及其耐旱性比较[J]. 广西植物, 2007, 27(3):431-434,474. |
ZHU L Q, LI J Y, ZHAO L J. Comparison on leaf anatomical structures and droughts resistance of six broad-leaved plant species[J]. Guihaia, 2007, 27(3):431-434,474.DOI: 10.3969/j.issn.1000-3142.2007.03.010. | |
[36] | LU M, CHEN M M, SONG J Y, et al. Anatomy and transcriptome analysis in leaves revealed how nitrogen (N) availability influence drought acclimation of Populus[J]. Trees, 2019, 33(4):1003-1014.DOI: 10.1007/s00468-019-01834-5. |
[37] | ZHU K, YUAN F H, WANG A Z, et al. Effects of soil rewatering on mesophyll and stomatal conductance and the associated mechanisms involving leaf anatomy and some physiological activities in Manchurian ash and Mongolian oak in the Changbai Mountains[J]. Plant Physiol Biochem, 2019, 144:22-34.DOI: 10.1016/j.plaphy.2019.09.025. |
[1] | REN Jiahui, GAO Handong, CHEN Zhenan, LI Hao, LIU Qiang, CHEN Pengjun. Growth and physiological response of Salix matsudana × alba to salt-flooding stress [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 57-66. |
[2] | YANG Fu, WANG Hui, WANG Qin, JIANG Chunqian, ZHOU Yanxu, LI Lubin. Screening of growth-promoting bacteria in the rhizosphere soil of Phyllostachys edulis and their growth-promoting effects in Zhejiang Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 83-90. |
[3] | YANG Mengqing, HUANG Shengyi, WANG Bin, ZHOU Zhichun, XU Xiaoniu, XU Weike, WU Renchao. Response of the growth and root development of Cyclobalanopsis gilva container seedlings to the slow-release fertilizer addition [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 103-111. |
[4] | LIN Qiang, XU Jin, LI Shangqian, LIN Yunbin, ZHANG Yunqing, OUYANG Lei. The early selection and analysis of genetic variation of Cryptomeria japonica half-sib progeny from seed orchard in Fuding, Fujian Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 78-86. |
[5] | YANG Yuanmu, LI Na, CHEN Xinyu, XU Fang, PAN Wen, ZHANG Weihua. Study on wood variation of provenances and clones of Castanopsis hystrix [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 41-50. |
[6] | HAO Zhaodong, MA Xiaoxiao, WANG Dandan, LU Ye, SHI Jisen, CHEN Jinhui. Cloning of the Liriodendron chinense LcPIN1a genes and its effect on plant growth and development [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 51-61. |
[7] | LI Panting, DU Manyi, WANG Yue, PEI Shunxiang, XIN Xuebing. The growth and photosynthetic characteristics of Acer truncatum seedlings in response to soil water and fertilizer coupling [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 113-122. |
[8] | WANG Yuxiao, ZHANG Bin, MA Qiuyue, FU Wei, KANG Zhen, ZHU Changhong, LI Shuxian. Softwood cutting technology for Acer truncatum and physiological and biochemical analysis during rooting process [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 123-130. |
[9] | WANG Yaoyi, WANG Hongxiang, WANG Yongqiang, ZENG Wenhao, YE Shaoming. Affecting factors analysis of functional diversity at different forest strata in an old growth forest community in Yachang Natural Reserve [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 28-38. |
[10] | YE Limin, XU Yuanke, ZHOU Yizhi, CHEN Zhenglu, WANG Yixiang, GE Hongli. Comprehensive effect of understory medicinal herb cultivation on individual volume growth in near-mature, mature and overmature Cunninghamia lanceolata forests [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 48-56. |
[11] | WANG Jiaxing, YAN Pingyu, SUN Baifei, LIU Jinhong, FENG Kele, ZHANG Hanguo. Growth variation and superior families early selection of Larix olgensis free-pollinated families [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 81-89. |
[12] | LIU Xiaofang, YUE Xiliang, FANG Shengzuo, LI Qing, SUN Xin. Effects of various ratios of nitrogen and phosphorus addition on the growth and contents of leaf bioactive substances in Cyclocarya paliurus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 57-66. |
[13] | YANG Hao, LIU Chao, ZHUANG Jiayao, ZHANG Shutong, ZHANG Wentao, MAO Guohao. Effects of different carrier bacterial fertilizers on growth, photosynthetic characteristics and soil nutrients of Amorpha fruticosa [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 81-89. |
[14] | WANG Gaiping, ZHANG Lei, CAO Fuliang, DING Yanpeng, ZHAO Qun, ZHAO Huiqin, WANG Zheng. Effect of red and blue light quality on growth physiological and flavonoid content of Ginkgo biloba seedlings [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 105-112. |
[15] | HAN Xinyu, GAO Lushuang, QIN Li, PANG Rongrong, LIU Mingqian, ZHU Yihong, TIAN Yiyu, ZHANG Jin. Effect of stand density on radial growth-climate relationship of Larix gmelinii [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 182-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||