JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2025, Vol. 49 ›› Issue (3): 163-171.doi: 10.12302/j.issn.1000-2006.202403012
Previous Articles Next Articles
Received:
2024-03-07
Accepted:
2024-04-24
Online:
2025-05-30
Published:
2025-05-27
Contact:
LI Nan
E-mail:attitude36@163.com;linan1550@163.com
CLC Number:
HOU Xuanzhu, LI Nan. Variation and trade-offs of twig and leaf traits among different broadleaved life form plants in the primitive broadleaved-Korean pine forest[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(3): 163-171.
Table 1
Standardized major axis estimation among traits of twig-leaf size relationships of different living broadleaf plants in northeast China"
指标(y-x) index | 生活型/物种 life form/species | 样本 sample | 决定系数 R2 | P | 斜率(95%置信区间) slope(95% confidence interval,95% CI) |
---|---|---|---|---|---|
单叶面积-枝横截面积 individual leaf area-twig cross-sectional area | 乔木 | 99 | 0.088 | 0.003 | 0.520(0.492,0.629) |
灌木 | 63 | 0.091 | 0.017 | 0.825(0.648,1.051) | |
T1 | 18 | 0.351 | 0.010 | 0.868(0.573,1.315) | |
T2 | 18 | 0.226 | 0.046 | 0.505(0.322,0.792) | |
T5 | 17 | 0.527 | 0.001 | 0.471(0.325,0.682) | |
S4 | 9 | 0.746 | 0.003 | 0.498(0.378,0.631) | |
总叶面积-枝横截面积 total leaf area-twig cross- sectional area | 乔木 | 99 | 0.788 | <0.001 | 1.029(0.948,1.118) |
灌木 | 63 | 0.469 | <0.001 | 1.029(0.948,1.118) | |
T1 | 18 | 0.481 | 0.001 | 1.051(0.724,1.526) | |
T2 | 18 | 0.487 | 0.001 | 0.726(0.501,1.052) | |
T5 | 17 | 0.551 | 0.001 | 0.490(0.342,0.703) | |
T6 | 17 | 0.351 | 0.012 | 1.059(0.689,1.629) | |
S2 | 9 | 0.635 | 0.010 | 0.710(0.550,0.904) | |
S4 | 9 | 0.720 | 0.004 | 0.710(0.550,0.904) | |
出叶强度-枝横截面积 volume-based leafing intensity-twig cross- sectional area | 乔木 | 99 | 0.085 | 0.004 | -1.175(-1.316,-1.051) |
灌木 | 63 | 0.706 | <0.001 | -1.175(-1.316,-1.051) | |
T1 | 18 | 0.806 | <0.001 | -1.545(-1.947,-1.225) | |
T2 | 18 | 0.741 | <0.001 | -1.408(-1.839,-1.079) | |
T3 | 15 | 0.518 | 0.002 | -1.556(-2.333,-1.038) | |
T4 | 14 | 0.868 | <0.001 | -2.071(-2.597,-1.651) | |
T5 | 17 | 0.902 | <0.001 | -2.515(-2.984,-2.119) | |
T6 | 17 | 0.567 | <0.001 | -3.419(-4.873,-2.398) | |
S1 | 11 | 0.576 | 0.007 | -1.368(-1.621,-1.174) | |
S2 | 9 | 0.858 | <0.001 | -1.368(-1.621,-1.174) | |
S3 | 8 | 0.895 | <0.001 | -1.368(-1.621,-1.174) | |
S4 | 9 | 0.925 | <0.001 | -1.368(-1.621,-1.174) | |
S5 | 8 | 0.884 | 0.001 | -1.368(-1.621,-1.174) | |
S6 | 18 | 0.735 | <0.001 | -1.368(-1.621,-1.174) | |
单叶干质量-枝干质量 individual leaf mass-twig mass | 乔木 | 99 | 0.218 | <0.001 | 0.376(0.315,0.448) |
灌木 | 63 | 0.269 | <0.001 | 0.548(0.441,0.681) | |
T1 | 18 | 0.645 | <0.001 | 0.673(0.494,0.919) | |
T2 | 18 | 0.252 | 0.034 | 0.438(0.281,0.683) | |
T5 | 17 | 0.709 | <0.001 | 0.350(0.261,0.468) | |
T6 | 17 | 0.439 | 0.004 | 0.300(0.201,0.449) | |
S1 | 11 | 0.625 | 0.004 | 0.382(0.333,0.442) | |
S2 | 9 | 0.787 | 0.001 | 0.382(0.333,0.442) | |
S4 | 9 | 0.930 | <0.001 | 0.382(0.333,0.442) | |
S5 | 8 | 0.649 | 0.016 | 0.382(0.333,0.442) | |
S6 | 18 | 0.670 | <0.001 | 0.382(0.333,0.442) |
Table 2
Standardized major axis estimation of the relationship between leaf size and volume-based leafing intensity of broadleaf plants of different life forms in northeast China"
指标(y-x) index | 生活型/物种 life form/ species | 决定 系数 R2 | P | 斜率(95%置信区间) slope(95% CI) | 指标(y-x) index | 生活型/物种 life form/ species | 决定 系数 R2 | P | 斜率(95%置信区间) slope(95% CI) |
---|---|---|---|---|---|---|---|---|---|
单叶面积- 出叶强度 individual leaf area- volume-based leafing intensity | 乔木 | 0.045 | 0.035 | -0.412(-0.501,-0.339) | 单叶干质量- 出叶强度 individual leaf mass-volume- based leafing intensity | 乔木 | 0.161 | <0.001 | -0.405(-0.486,-0.337) |
灌木 | 0.277 | <0.001 | -0.728(-0.904,-0.587) | 灌木 | 0.305 | <0.001 | -0.672(-0.830,-0.543) | ||
T1 | 0.590 | <0.001 | -0.562(-0.784,-0.403) | T1 | 0.497 | 0.001 | -0.754(-1.089,-0.522) | ||
T2 | 0.422 | 0.004 | -0.358(-0.531,-0.242) | T2 | 0.301 | 0.018 | -0.434(-0.667,-0.282) | ||
T5 | 0.561 | 0.001 | -0.187(-0.268,-0.131) | T5 | 0.566 | <0.001 | -0.271(-0.386,-0.190) | ||
S2 | 0.547 | 0.023 | -0.338(-0.412,-0.272) | T6 | 0.375 | 0.009 | -0.263(-0.402,-0.173) | ||
S4 | 0.841 | 0.001 | -0.338(-0.412,-0.272) | S2 | 0.864 | <0.001 | -0.409(-0.487,-0.341) | ||
S6 | 0.261 | 0.030 | -0.338(-0.412,-0.272) | S4 | 0.813 | 0.001 | -0.409(-0.487,-0.341) | ||
S6 | 0.428 | 0.003 | -0.409(-0.487,-0.341) |
[1] | KATTGE J, DÍAZ S, LAVOREL S, et al. TRY: a global database of plant traits[J]. Global Change Biology, 2011, 17(9):2905-2935.DOI: 10.1111/j.1365-2486.2011.02451.x. |
[2] | VIOLLE C, ENQUIST B J, MCGILL B J, et al. The return of the variance:intraspecific variability in community ecology[J]. Trends in Ecology & Evolution, 2012, 27(4):244-252.DOI: 10.1016/j.tree.2011.11.014. |
[3] | WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827.DOI: 10.1038/nature02403. |
[4] | YANG J, SONG X Y, CAO M, et al. On the modelling of tropical tree growth:the importance of intra-specific trait variation,non-linear functions and phenotypic integration[J]. Annals of Botany, 2021, 127(4):533-542.DOI: 10.1093/aob/mcaa085. |
[5] | LEVIONNOIS S, COSTE S, NICOLINI E, et al. Scaling of petiole anatomies,mechanics and vasculatures with leaf size in the widespread Neotropical pioneer tree species Cecropia obtusa Trécul (Urticaceae)[J]. Tree Physiology, 2020, 40(2):245-258.DOI: 10.1093/treephys/tpz136. |
[6] | ELLNER S P, SNYDER R E, ADLER P B, et al. An expanded modern coexistence theory for empirical applications[J]. Ecology Letters, 2019, 22(1):3-18.DOI: 10.1111/ele.13159. |
[7] | WESTOBY M, FALSTER D S, MOLES A T, et al. Plant ecological strategies:some leading dimensions of variation between species[J]. Annual Review of Ecology and Systematics, 2002, 33:125-159.DOI: 10.1146/annurev.ecolsys.33.010802.150452. |
[8] | CORNWELL W K, ACKERLY D D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California[J]. Ecological Monographs, 2009, 79(1):109-126.DOI: 10.1890/07-1134.1. |
[9] | MIGLIAVACCA M, MUSAVI T, MAHECHA M D, et al. The three major axes of terrestrial ecosystem function[J]. Nature, 2021, 598(7881):468-472.DOI: 10.1038/s41586-021-03939-9. |
[10] | TAYLOR A, WEIGELT P, DENELLE P, et al. The contribution of plant life and growth forms to global gradients of vascular plant diversity[J]. New Phytologist, 2023, 240(4):1548-1560.DOI: 10.1111/nph.19011. |
[11] | MOUILLOT D, GRAHAM N A J, VILLÉGER S, et al. A functional approach reveals community responses to disturbances[J]. Trends in Ecology & Evolution, 2013, 28(3):167-177.DOI: 10.1016/j.tree.2012.10.004. |
[12] | YAN E R, WANG X H, CHANG S X, et al. Scaling relationships among twig size,leaf size and leafing intensity in a successional series of subtropical forests[J]. Tree Physiology, 2013, 33(6):609-617.DOI: 10.1093/treephys/tpt042. |
[13] | 杨冬梅, 占峰, 张宏伟. 清凉峰不同海拔木本植物小枝内叶大小-数量权衡关系[J]. 植物生态学报, 2012, 36(4):281-291. |
YANG D M, ZHAN F, ZHANG H W. Trade-off between leaf size and number in current-year twigs of deciduous broad-leaved woody species at different altitudes on Qingliang Mountain, southeastern China[J]. Chinese Journal of Plant Ecology, 2012, 36(4):281-291.DOI: 10.3724/SP.J.1258.2012.00281. | |
[14] | CORNER E J H. The durian theory or the origin of the modern tree[J]. Annals of Botany, 1949, 13(4):367-414.DOI: 10.1093/oxfordjournals.aob.a083225. |
[15] | SUN S C, JIN D M, SHI P L. The leaf size-twig size spectrum of temperate woody species along an altitudinal gradient:an invariant allometric scaling relationship[J]. Annals of Botany, 2006, 97(1):97-107.DOI: 10.1093/aob/mcj004. |
[16] | MENG F Q, ZHANG G F, LI X C, et al. Growth synchrony between leaves and stems during twig development differs among plant functional types of subtropical rainforest woody species[J]. Tree Physiology, 2015, 35(6):621-631.DOI: 10.1093/treephys/tpv021. |
[17] | PRESTON K A, ACKERLY D D. Hydraulic architecture and the evolution of shoot allometry in contrasting climates[J]. American Journal of Botany, 2003, 90(10):1502-1512.DOI: 10.3732/ajb.90.10.1502. |
[18] | BROUAT C, GIBERNAU M, AMSELLEM L, et al. Corner’s rules revisited:ontogenetic and interspecific patterns in leaf-stem allometry[J]. New Phytologist, 1998, 139(3):459-470.DOI: 10.1046/j.1469-8137.1998.00209.x. |
[19] | BAIRD A S, TAYLOR S H, PASQUET-KOK J, et al. Developmental and biophysical determinants of grass leaf size worldwide[J]. Nature, 2021, 592(7853):242-247.DOI: 10.1038/s41586-021-03370-0. |
[20] | YANG Y Z, WANG H, HARRISON S P, et al. Quantifying leaf-trait covariation and its controls across climates and biomes[J]. New Phytologist, 2019, 221(1):155-168.DOI: 10.1111/nph.15422. |
[21] | KLEIMAN D, AARSSEN L W. The leaf size/number trade-off in trees[J]. Journal of Ecology, 2007, 95(2):376-382.DOI: 10.1111/j.1365-2745.2006.01205.x. |
[22] | WESTOBY M, WRIGHT I J. The leaf size-twig size spectrum and its relationship to other important spectra of variation among species[J]. Oecologia, 2003, 135(4):621-628.DOI: 10.1007/s00442-003-1231-6. |
[23] | 徐丽娜, 金光泽. 小兴安岭凉水典型阔叶红松林动态监测样地:物种组成与群落结构[J]. 生物多样性, 2012, 20(4):470-481. |
XU L N, JIN G Z. Species composition and community structure of a typical mixed broadleaved-Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve,northeast China[J]. Biodiversity Science, 2012, 20(4):470-481.DOI: 10.3724/SP.J.1003.2012.12233. | |
[24] | WARTON D I, DUURSMA R A, FALSTER D S, et al. Smatr 3: an R package for estimation and inference about allometric lines[J]. Methods in Ecology and Evolution, 2012, 3(2):257-259.DOI: 10.1111/j.2041-210x.2011.00153.x. |
[25] | R CORE TEAM. R: a language and environment for statistical computing[Z]. R Foundation for Statistical Computing, Vienna, Austria, 2021. http://www.R-project.org/. |
[26] | NIINEMETS Ü, KEENAN T F, HALLIK L. A worldwide analysis of within-canopy variations in leaf structural,chemical and physiological traits across plant functional types[J]. New Phytologist, 2015, 205(3):973-993.DOI: 10.1111/nph.13096. |
[27] | DONG N, PRENTICE I C, WRIGHT I J, et al. Components of leaf-trait variation along environmental gradients[J]. New Phytologist, 2020, 228(1):82-94.DOI: 10.1111/nph.16558. |
[28] | ANDEREGG L D L, LOY X, MARKHAM I P, et al. Aridity drives coordinated trait shifts but not decreased trait variance across the geographic range of eight Australian trees[J]. New Phytologist, 2021, 229(3):1375-1387.DOI: 10.1111/nph.16795. |
[29] | SCHÖB C, ARMAS C, GULER M, et al. Variability in functional traits mediates plant interactions along stress gradients[J]. Journal of Ecology, 2013, 101(3):753-762.DOI: 10.1111/1365-2745.12062. |
[30] | WESTOBY M, WRIGHT I J. Land-plant ecology on the basis of functional traits[J]. Trends in Ecology & Evolution, 2006, 21(5):261-268.DOI: 10.1016/j.tree.2006.02.004. |
[31] | VLEMINCKX J, FORTUNEL C, VALVERDE-BARRANTES O, et al. Resolving whole-plant economics from leaf,stem and root traits of 1467 Amazonian tree species[J]. Oikos, 2021, 130(7):1193-1208.DOI: 10.1111/oik.08284. |
[32] | 王进, 朱江, 艾训儒, 等. 湖北星斗山地形变化对不同生活型植物叶功能性状的影响[J]. 植物生态学报, 2019, 43(5):447-457. |
WANG J, ZHU J, AI X R, et al. Effects of topography on leaf functional traits across plant life forms in Xingdou Mountain, Hubei,China[J]. Chinese Journal of Plant Ecology, 2019, 43(5):447-457.DOI: 10.17521/cjpe.2018.0228. | |
[33] | WESTERBAND A C, FUNK J L, BARTON K E. Intraspecific trait variation in plants:a renewed focus on its role in ecological processes[J]. Annals of Botany, 2021, 127(4):397-410.DOI: 10.1093/aob/mcab011. |
[34] | HE D, BISWAS S R, XU M-S, et al. The importance of intraspecific trait variability in promoting functional niche dimensionality[J]. Ecography, 2021, 44(3):380-390.DOI: 10.1111/ecog.05254. |
[35] | GIVNISH T J, VERMEIJ G J. Sizes and shapes of Liane leaves[J]. The American Naturalist, 1976, 110(975):743-778.DOI: 10.1086/283101. |
[36] | FAN Z X, STERCK F, ZHANG S B, et al. Tradeoff between stem hydraulic efficiency and mechanical strength affects leaf-stem allometry in 28 Ficus tree species[J]. Frontiers in Plant Science, 2017,8:1619.DOI: 10.3389/fpls.2017.01619. |
[37] | FAJARDO A, MORA J P, ROBERT E. Corner’s rules pass the test of time:little effect of phenology on leaf-shoot and other scaling relationships[J]. Annals of Botany, 2020, 126(7):1129-1139.DOI: 10.1093/aob/mcaa124. |
[38] | 李曼, 郑媛, 郭英荣, 等. 武夷山不同海拔黄山松枝叶大小关系[J]. 应用生态学报, 2017, 28(2):537-544. |
LI M, ZHENG Y, GUO Y R, et al. Scaling relationships between twig size and leaf size of Pinus hwangshanensis along an altitudinal gradient in Wuyi Mountains,China[J]. Chinese Journal of Applied Ecology, 2017, 28(2):537-544.DOI: 10.13287/j.1001-9332.201702.039. | |
[39] | SLOT M, REY-SÁNCHEZ C, GERBER S, et al. Thermal acclimation of leaf respiration of tropical trees and lianas:response to experimental canopy warming,and consequences for tropical forest carbon balance[J]. Global Change Biology, 2014, 20(9):2915-2926.DOI: 10.1111/gcb.12563. |
[40] | WRIGHT I J, DONG N, MAIRE V, et al. Global climatic drivers of leaf size[J]. Science, 2017, 357(6354):917-921.DOI: 10.1126/science.aal4760. |
[41] | LIU R, YANG X J, GAO R R, et al. Allometry rather than abiotic drivers explains biomass allocation among leaves,stems and roots of Artemisia across a large environmental gradient in China[J]. Journal of Ecology, 2021, 109(2):1026-1040.DOI: 10.1111/1365-2745.13532. |
[42] | YANG D M, LI G Y, SUN S C. The generality of leaf size versus number trade-off in temperate woody species[J]. Annals of Botany, 2008, 102(4):623-629.DOI: 10.1093/aob/mcn135. |
[43] | OSADA N, NABESHIMA E, HIURA T. Geographic variation in shoot traits and branching intensity in relation to leaf size in Fagus crenata:a common garden experiment[J]. American Journal of Botany, 2015, 102(6):878-887.DOI: 10.3732/ajb.1400559. |
[44] | CUI E Q, WENG E S, YAN E R, et al. Robust leaf trait relationships across species under global environmental changes[J]. Nature Communications, 2020, 11(1):2999.DOI: 10.1038/s41467-020-16839-9. |
[45] | 李锦隆, 王满堂, 李涵诗, 等. 冠层高度对江西69种阔叶树小枝单叶生物量与出叶强度关系的影响[J]. 林业科学, 2021, 57(2):62-71. |
LI J L, WANG M T, LI H S, et al. Effects of canopy height on the relationship between individual leaf mass and leafing intensity of 69 broad leaved trees in Jiangxi province[J]. Scientia Silvae Sinicae, 2021, 57(2):62-71. DOI:10.11707/j.1001-7488.20210207. | |
[46] | ZHANG L, COPINI P, WEEMSTRA M, et al. Functional ratios among leaf,xylem and phloem areas in branches change with shade tolerance,but not with local light conditions,across temperate tree species[J]. New Phytologist, 2016, 209(4):1566-1575.DOI: 10.1111/nph.13731. |
[47] | OSADA N, HIURA T. How is light interception efficiency related to shoot structure in tall canopy species?[J]. Oecologia, 2017, 185(1):29-41.DOI: 10.1007/s00442-017-3926-0. |
[48] | MENG F Q, CAO R, YANG D M, et al. Trade-offs between light interception and leaf water shedding:a comparison of shade-and sunvadapted species in a subtropical rainforest[J]. Oecologia, 2014, 174(1):13-22.DOI: 10.1007/s00442-013-2746-0. |
[1] | LIAO Yining, GUO Sujuan, WANG Fangfang, MA Yali, LIU Yabin. Effects of combined application of organic and inorganic fertilizers on soil fertility and root functional traits in chestnut orchards [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(5): 84-92. |
[2] | OU Xiaolan, LIU Yanhong. Effect of age, slope aspects and diameter classes on leaf functional traits of Pinus tabulaeformis in Songshan, Beijing [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(04): 80-88. |
[3] | JIANG Dalong, XU Xia, RUAN Honghua. Review of nutrient resorption and its regulating in plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(01): 183-188. |
[4] | XIE Jing,ZHU Wanze,ZHOU Peng,ZHAO Guang. Variations in carbon isotope of the main woody plants along the elevational gradient on the Gongga Mountain [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(06): 33-37. |
[5] | OUYANG Ming, YANG Qingpei, QI Hongyan, LIU Jun, MA Siqi, SONG Qingni. A comparison of seasonal dynamics of nonstructural carbohydrates for deciduous and evergreen landscape trees in subtropical region, China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(02): 105-110. |
[6] | ZHANG Mingjuan,Liu Maosong*,WANG Lei,XU Chi,ZHU Xubin. The Analysis of Differences of Species Diversity Among Typical Communities in Baohua Mountain [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2003, 27(06): 35-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||