JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (1): 212-218.doi: 10.12302/j.issn.1000-2006.201911012
Previous Articles Next Articles
FAN Jiahui1(), ZHANG Yali1, LI Mingshi1,2,*(
)
Received:
2019-11-06
Accepted:
2020-03-15
Online:
2021-01-30
Published:
2021-02-01
Contact:
LI Mingshi
E-mail:1018473488@qq.com;nfulms@njfu.edu.cn
CLC Number:
FAN Jiahui, ZHANG Yali, LI Mingshi. Comparing four methods for extracting impervious surfaces using spectral information in synergy with spatial heterogeneity of remotely sensed imagery[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(1): 212-218.
Table 1
The validation statistics of the extracted impervious surfaces by different methods"
点号 No. | Google Earth | PPI_LSMM | PPI_MTMF | PPI_BMM | PPI_BPNN | SPPI_LSMM | SPPI_MTMF | SPPI_BMM | SPPI_BPNN |
---|---|---|---|---|---|---|---|---|---|
1 | 0.126 5 | 0.141 0 | 0.331 7 | 0.237 1 | 0.225 0 | 0.297 1 | 0.303 2 | 0.213 8 | 0.224 6 |
2 | 0.365 5 | 0.287 1 | 0.262 7 | 0.389 8 | 0.316 0 | 0.297 8 | 0.257 3 | 0.396 7 | 0.329 6 |
3 | 0.475 7 | 0.309 1 | 0.421 6 | 0.546 8 | 0.449 6 | 0.587 4 | 0.402 3 | 0.587 1 | 0.445 7 |
… | … | … | … | … | … | … | … | … | … |
49 | 0.216 1 | 0.106 8 | 0.176 3 | 0.149 5 | 0.186 2 | 0.116 4 | 0.177 1 | 0.156 4 | 0.186 4 |
50 | 0.225 8 | 0.321 2 | 0.322 4 | 0.331 7 | 0.281 4 | 0.329 8 | 0.285 2 | 0.321 7 | 0.291 8 |
窗口平均精度/% average accuracy | 80.62 | 83.17 | 87.56 | 88.37 | 81.37 | 86.42 | 89.50 | 90.45 |
[1] |
BRABEC E, SCHULTE S, RICHARDS P L. Impervious surfaces and water quality:a review of current literature and its implications for watershed planning[J]. J Plan Lit, 2002,16(4):499-514.DOI: 10.1177/088541202400903563.
doi: 10.1177/088541202400903563 |
[2] | SHEN W J, WU T, LI M S. Mapping urban impervious surfaces of Nanjing from the dense landsat imagery[C]// 2012 5th International Congress on Image and Signal Processing,16-18 Oct 2012,Chongqing,China.IEEE, 2012:1068-1072.DOI: 10.1109/CISP.2012.6469893. |
[3] | 仵宏基. 基于长时间序列陆地卫星数据的南京城市不透水层动态制图研究[D]. 南京:南京林业大学, 2017. |
WU H J. Dynamic mapping of urban impervious surfaces in Nanjing based on landsat long-term time series observations[D]. Nanjing:Nanjing Forestry University, 2017. | |
[4] |
CAO S S, HU D Y, ZHAO W J, et al. Monitoring changes in the impervious surfaces of urban functional zones using multisource remote sensing data:a case study of Tianjin,China[J]. Giscience Remote Sens, 2019,56(7):967-987.DOI: 10.1080/15481603.2019.1600110.
doi: 10.1080/15481603.2019.1600110 |
[5] |
吴志杰, 赵书河. 基于TM图像的“增强的指数型建筑用地指数”研究[J]. 国土资源遥感, 2012,24(2):50-55.
doi: 10.6046/gtzyyg.2012.02.10 |
WU Z J, ZHAO S H. A study of enhanced index-based built-up index based on landsat TM imagery[J]. Remote Sens Land Resour, 2012,24(2):50-55.DOI: 10.6046/gtzyyg.2012.02.10. | |
[6] |
YANG J, HE Y H. Automated mapping of impervious surfaces in urban and suburban areas:linear spectral unmixing of high spatial resolution imagery[J]. Int J Appl Earth Obs Geoinformation, 2017,54:53-64.DOI: 10.1016/j.jag.2016.09.006.
doi: 10.1016/j.jag.2016.09.006 |
[7] | 甘玉泉. 高光谱遥感图像光谱解混方法研究及其应用[D]. 北京:中国科学院大学, 2018. |
GAN Y Q. Research and application of spectral unmixing method for hyperspectral remote sensing imagry[D]. Beijing:University of Chinese Academy of Sciences, 2018. | |
[8] | 蓝金辉, 邹金霖, 郝彦爽, 等. 高光谱遥感影像混合像元分解研究进展[J]. 遥感学报, 2018,22(1):13-27. |
LAN J H, ZOU J L, HAO Y S, et al. Research progress on unmixing of hyperspectral remote sensing imagery[J]. J Remote Sens, 2018,22(1):13-27.DOI: 10.11834/jrs.20186502. | |
[9] |
RIDD M K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing:comparative anatomy for cities[J]. Int J Remote Sens, 1995,16(12):2165-2185.DOI: 10.1080/01431169508954549.
doi: 10.1080/01431169508954549 |
[10] |
WU C S, MURRAY A T. Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sens Environ, 2003,84(4):493-505.DOI: 10.1016/S0034-4257(02)00136-0.
doi: 10.1016/S0034-4257(02)00136-0 |
[11] | 杨斌, 王斌. 高光谱遥感图像非线性解混研究综述[J]. 红外与毫米波学报, 2017,36(2):173-185. |
YANG B, WANG B. Review of nonlinear unmixing for hyperspectral remote sensing imagery[J]. J Infrared Millim Waves, 2017,36(2):173-185.DOI: 10.11972/j.issn.1001-9014.2017.02.009. | |
[12] |
LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999,401(6755):788.DOI: 10.1038/44565.
doi: 10.1038/44565 pmid: 10548103 |
[13] |
ZHUO L, SHI Q L, TAO H Y, et al. An improved temporal mixture analysis unmixing method for estimating impervious surface area based on MODIS and DMSP-OLS data[J]. ISPRS J Photogramm Remote Sens, 2018,142:64-77.DOI: 10.1016/j.isprsjprs.2018.05.016.
doi: 10.1016/j.isprsjprs.2018.05.016 |
[14] |
ALTMANN Y, HALIMI A, DOBIGEON N, et al. Supervised nonlinear spectral unmixing using a postnonlinear mixing model for hyperspectral imagery[J]. IEEE Trans Image Process, 2012,21(6):3017-3025.DOI: 10.1109/TIP.2012.2187668.
doi: 10.1109/TIP.2012.2187668 pmid: 22345533 |
[15] |
FAN W Y, HU B X, MILLER J, et al. Comparative study between a new nonlinear model and common linear model for analysing laboratory simulated-forest hyperspectral data[J]. Int J Remote Sens, 2009,30(11):2951-2962. DOI: 10.1080/01431160802558659.
doi: 10.1080/01431160802558659 |
[16] |
夏俊士, 杜培军, 曹文. 基于非线性光谱混合模型的遥感影像提取城市不透水层[J]. 光子学报, 2011,40(1):13-18.
doi: 10.3788/gzxb20114001.0013 |
XIA J S, DU P J, CAO W. Urban impervious surface extraction from remote sensing image based on nonlinear spectral mixture model[J]. Acta Photonica Sin, 2011,40(1):13-18.DOI: 10.3788/gzxb20114001.0013. | |
[17] |
CHANG C I, PLAZA A. A fast iterative algorithm for implementation of pixel purity index[J]. IEEE Geosci Remote Sensing Lett, 2006,3(1):63-67.DOI: 10.1109/lgrs.2005.856701.
doi: 10.1109/LGRS.2005.856701 |
[18] |
CHANG C I, WU C C, LIU W, et al. A new growing method for simplex-based endmember extraction algorithm[J]. IEEE Trans Geosci Remote Sens, 2006,44(10):2804-2819.DOI: 10.1109/TGRS.2006.881803.
doi: 10.1109/TGRS.2006.881803 |
[19] |
CRAIG M D. Minimum-volume transforms for remotely sensed data[J]. IEEE Trans Geosci Remote Sensing, 1994,32(3):542-552.DOI: 10.1109/36.297973.
doi: 10.1109/36.297973 |
[20] | FUHRMANN D R. Simplex shrink-wrap algorithm[J]. Proceedings of SPIE-the International Society for Optical Engineering, 1999,3718(5):501-511. DOI: 10.1117/12.359990. |
[21] | 焦俊男. 基于空间光谱信息协同的多光谱影像端元精确提取方法研究[D]. 南京:南京大学, 2017. |
JIAO J N. Integrating spatial spectral information for multispectral image refined endmember extraction[D]. Nanjing:Nanjing University, 2017. | |
[22] | 南京市规划和自然局. 2018年季度国土资源综合统计报告[R/OL].(2019-04-28)[2019-10-29] http://zrzy.jiangsu.gov.cn/gtapp/nrglIndex.action?type=2&messageID=2c9082b56a2e4062016a62ac17c40a60.html. |
[23] |
VERMOTE E, JUSTICE C, CLAVERIE M, et al. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product[J]. Remote Sens Environ, 2016,185:46-56.DOI: 10.1016/j.rse.2016.04.008.
doi: 10.1016/j.rse.2016.04.008 pmid: 32020955 |
[24] |
徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005,9(5):589-595.
doi: 10.11834/jrs.20050586 |
XU H Q. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. J Remote Sens, 2005,9(5):589-595.DOI: 10.3321/j.issn:1007-4619.2005.05.012. | |
[25] | 苏红军, 刘浩. 一种利用空间和光谱信息的高光谱遥感多分类器动态集成算法[J]. 国土资源遥感, 2017,29(2):15-21. |
SU H J, LIU H. a novel dynamic classifier selection algorithm using spatial-spectral information for hyperspectral classification[J]. Remote Sens Land Resour, 2017,29(2):15-21.DOI: 10.6046/gtzyyg.2017.02.03. | |
[26] | 王靖, 吴见. 融入空间信息的湿地信息提取技术[J]. 南京林业大学学报(自然科学版), 2014,38(4):19-22. |
WANG J, WU J. Wetland information extraction technology integrated by spatial information[J]. J Nanjing For Univ (Nat Sci Ed), 2014,57(4):19-22.DOI: 10.3969/j.issn.1000-2006.2014.04.004. | |
[27] | 杨斌, 王斌, 吴宗敏. 基于双线性混合模型的高光谱图像非线性光谱解混[J]. 红外与毫米波学报, 2018,37(5):631-641. |
YANG B, WANG B, WU Z M. Nonlinear spectral unmixing for hyperspectral imagery based on bilinear mixture models[J]. J Infrared Millim Waves, 2018,37(5):631-641.DOI: 10.11972/j.issn.1001-9014.2018.05.017. |
[1] | WANG Yanfang, TAN Lu, GUO Hongli, WU Fang, QI Fei, MENG Wenting, XU Yannan. Study on spatial and temporal variation of forest fractional vegetation cover in Liyang based on multi-source remote sensing data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 183-191. |
[2] | YANG Fan, ZHAO Zengpeng, ZHANG Lei. Cloud detection technology based on Gaussian mixture model for high-resolution remote sensing imagery [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(04): 134-140. |
[3] | WANG Jingrui, ZHANG Lingling, LI Mingshi, SHEN Wenjuan. Monitoring methods and application of urbanization processes based on remote sensing [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(05): 57-64. |
[4] | WU Jian, HOU Gonglan,LIU Minshi, LI Weitao. Land use dynamic monitoring for ten years by remote sensing of Anhui province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2014, 38(02): 147-150. |
[5] | YANG Jing, ZHUANG Jiayao, ZHANG Jinchi. Study on the change of land use in the Xuzhou city based on RS and GIS [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2013, 37(02): 85-91. |
[6] | PAN Jie, LI Mingshi. Textural features analysis of highresolution remote sensing image based on the information abundance [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2010, 34(04): 129-134. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||