Effects of climate warming on radial growth of Larix gmelinii in Wudalianchi, Heilongjiang Province

XIE Lihong, HUANG Qingyang, CAO Hongjie, YANG Fan, WANG Jifeng, NI Hongwei

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 150-158.

PDF(2068 KB)
PDF(2068 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (2) : 150-158. DOI: 10.12302/j.issn.1000-2006.202101008

Effects of climate warming on radial growth of Larix gmelinii in Wudalianchi, Heilongjiang Province

Author information +
History +

Abstract

【Objective】The Longmen stone village lava platform is the main distribution area of the Larix gmelinii natural forest in the community of the Wudalianchi volcano group. In this study, we explored the response of the radial growth of L. gmelinii in Longmen stone village to climate warming over the past 51 years (1968-2018) and provided a scientific basis for the vegetation succession trend of the Wudalianchi volcano group under global warming. 【Method】We performed the Mann-Kendall test to determine the trend of temperature change and the years of possible abrupt air temperature changes over the past 51 years. We also analyzed the response characteristics of the radial growth of L. gmelinii to climate change over two periods (1968-1981 and 1982-2018) using tree-ring climatology. 【Result】We found that the mean air temperature of Wudalianchi has been increasing in the past 44 years (1975-2018) and that 1981 was the mutation point. After global warming, both the ring index and basal area increment of L. gmelinii decreased; the tree-ring index showed an upward trend, while the basal area increment showed a downward trend, but the changes were not significant. The “separation effect” appeared in the response of the radial growth to the increased air temperature. Together, water and temperature controlled the growth of L. gmelinii, but air temperature was the main factor affecting the radial growth. The response pattern of the radial growth to climatic factors was significantly affected by global warming. Meanwhile, the response sensitivity of the radial growth to the annual mean air temperature, annual mean minimum air temperature, and coldness index was significantly enhanced. However, the main factors that determined the ring width of L. gmelinii were the precipitation in November of the previous year and the mean minimum air temperature in February, March, and the pre-growing season of the current year. 【Conclusion】Although the climate warmed significantly in Wudalianchi after 1981, it did not have a significant impact on the radial growth of L. gmelinii. The reason for the “separation effect” and the significant changes in the response of the radial growth to climatic factors may be the drought stress after warming.

Key words

Larix gmelinii / climate warming / radial growth / basal area increment / lava platform

Cite this article

Download Citations
XIE Lihong , HUANG Qingyang , CAO Hongjie , et al . Effects of climate warming on radial growth of Larix gmelinii in Wudalianchi, Heilongjiang Province[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(2): 150-158 https://doi.org/10.12302/j.issn.1000-2006.202101008

References

[1]
孙凤华, 杨素英, 陈鹏狮. 东北地区近44年的气候暖干化趋势分析及可能影响[J]. 生态学杂志, 2005, 24(7):751-755,762.
SUN F H, YANG S Y, CHEN P S. Climatic warming-drying trend in northeastern China during the last 44 years and its effects[J]. Chin J Ecol, 2005, 24(7):751-755,762. DOI: 10.13292/j.1000-4890.2005.0035.
[2]
吉奇, 宋冀凤, 刘辉. 近50年东北地区温度降水变化特征分析[J]. 气象与环境学报, 2006, 22(5):1-5.
JI Q, SONG J F, LIU H. Characteristics of temperature and precipitation in northeast China from 1951 to 2000[J]. J Meteorol Environ, 2006, 22(5):1-5. DOI: 10.3969/j.issn.1673-503X.2006.05.001.
[3]
王绍武, 赵宗慈, 唐国利. 中国的气候变暖[J]. 国际政治研究, 2009, 30(4):1-11,194.
WANG S W, ZHAO Z C, TANG G L. The warming of climate in China[J]. Int Politics Q, 2009, 30(4):1-11,194.
[4]
FRITTS H C. Tree rings and climate[M]. New York: Academic Press, 1976.
[5]
崔海亭, 刘鸿雁, 戴君虎. 山地生态学与高山林线研究[M]. 北京: 科学出版社, 2005.
CUI H T, LIU H Y, DAI J H. Mountain ecology and alpine tree-line research[M]. Beijing: Science Press, 2005.
[6]
DELIGNE N I, CASHMAN K V, ROERING J J. After the lava flow: the importance of external soil sources for plant colonization of recent lava flows in the central Oregon Cascades,USA[J]. Geomorphology, 2013, 202:15-32. DOI: 10.1016/j.geomorph.2012.12.009.
[7]
周志强, 徐丽娇, 张玉红, 等. 黑龙江五大连池的生态价值分析[J]. 生物多样性, 2011, 19(1):63-70.
Abstract
黑龙江五大连池处于大小兴安岭和松嫩平原的交错地带, 在过去210万年间经历了7次大规模的火山喷发, 是中国保存最为完好的内陆火山遗迹, 2010年被我国政府遴选为世界自然遗产提名地。为了科学、准确地阐述五大连池生态方面的突出普遍价值, 本文在《实施世界遗产公约操作指南》的框架下, 整合野外调查数据和文献资料, 在与其他相关世界遗产地充分比较的基础上, 较为全面地分析了五大连池的生态价值。五大连池植物地理特征交错, 区系来源广泛; 物种组成相对丰富; 发育在熔岩台地上的矮曲林反映了植物的特殊适应过程; 特有成因形成了陆生和水生两个完整的植被演替序列; 陆生植被演替同时存在普通演替和斑块动态演替两种模式, 在熔岩地貌上斑块动态演替模式更为随机而高效。上述生态特征充分展示了五大连池正在进行的生物生态过程, 体现了五大连池独特的生态价值, 为后续有效保护和深入科学研究提供了支撑。
ZHOU Z Q, XU L J, ZHANG Y H, et al. An analysis of the ecological value of Wudalianchi,Heilongjiang Province, China[J]. Biodivers Sci, 2011, 19(1):63-70. DOI: 10.3724/SP.J.1003.2011.08262.
[8]
孙振静, 赵慧颖, 朱良军, 等. 大兴安岭北部不同降水梯度下兴安落叶松生长对升温的响应差异[J]. 北京林业大学学报, 2019, 41(6):1-14.
SUN Z J, ZHAO H Y, ZHU L J, et al. Diff-erences in response of Larix gmelinii growth to rising temperature under different precipitation gradients in northern Daxing’an Mountains of northeastern China[J]. J Beijing For Univ, 2019, 41(6):1-14. DOI: 10.13332/j.1000-1522.20190007.
[9]
常永兴, 陈振举, 张先亮, 等. 气候变暖下大兴安岭落叶松径向生长对温度的响应[J]. 植物生态学报, 2017, 41(3):279-289.
Abstract
大兴安岭是我国气候变暖的敏感地区。为比较在升温过程中不同地区落叶松(Larix gmelinii)径向生长对温度的响应差异, 在大兴安岭主脉南段、中段和北段进行树木年轮取样, 建立了各点年轮宽度年表, 根据年表第一主成分载荷系数分类最终合成南部、中部和北部各区年轮指数。利用相关函数分析了落叶松径向生长与温度变化的关系, 结合主成分分析对比了不同地区树木年轮宽度变化对温度的响应差异。结果表明: 落叶松径向生长对温度变化的响应呈现明显的南北差异(中部>北部>南部); 南部年轮指数与上年11月到当年4月的平均温度显著相关, 中部年轮指数与上年生长季(6-8月)和当年3-10月的平均温度显著负相关, 北部年轮指数与生长季前(4-5月)的平均温度极显著正相关。气候变暖背景下, 高温引起的区域暖干化使土壤水分成为限制落叶松径向生长的主要因子, 土壤干旱程度加剧使落叶松生长对温度变化的响应增强。胸高断面积增量指示的落叶松生产力经历了从响应低温胁迫到响应高温引起的水分胁迫的转变。未来几十年, 若温度持续升高, 大兴安岭地区落叶松径向生长量将呈南部和中部降低、北部升高的趋势。
CHANG Y X, CHEN Z J, ZHANG X L, et al. Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming[J]. Chin J Plant Ecol, 2017, 41(3):279-289. DOI: 10.17521/cjpe.2016.0222.
[10]
张朋磊, 刘滨辉. 气候变化对不同纬度兴安落叶松径向生长的影响[J]. 东北林业大学学报, 2015, 43(3):10-13.
ZHANG P L, LIU B H. Effect of chinate change on Larix gmelinii growth in different latitudes[J]. J Northeast For Univ, 2015, 43(3):10-13. DOI: 10.13759/j.cnki.dlxb.20150120.017.
[11]
郭莹洁, 赵荣军, 钟永, 等. 兴安落叶松成熟材单一年轮顺纹力学模型[J]. 南京林业大学学报(自然科学版) 2015, 39(1):177-180.
GUO Y J, ZHAO R J, ZHONG Y, et al. Modeling the longitudinal mechanical properties of a single annual ring of Larix gmelinii mature wood[J]. J Nanjing For Univ (Nat Sci Ed), 2015, 39(1):177-180. DOI: 10.3969/j.issn.1000-2006.2015.01.001.
[12]
沈海滨, 王小德, 董立军. 黑龙江五大连池风景区主要植被类型特征[J]. 北方园艺, 2011(1):108-111.
SHEN H B, WANG X D, DONG L J. Characteristics of main vegetation types in Wudalianchi scenic spot of Heilongjiang Province[J]. North Hortic, 北方园艺, 2011(1):108-111. DOI: 1001-0009.2011.01.0108.04.
[13]
张树民, 陈黎明, 邢润贵, 等. 五大连池火山区土壤和植被分布与特征[J]. 国土与自然资源研究, 2005(1):86-88.
ZHANG S M, CHEN L M, XING R G, et al. Distribution and features on soil and vegetation of Five-linked-great-pool Lake volcano district[J]. Territ Nat Resour Stuty, 2005(1):86-88. DOI: 10.16202/j.cnki.tnrs.2005.01.044.
[14]
河海. 使用WinDENDRO测量树轮宽度及交叉定年方法[J]. 重庆师范大学学报(自然科学版), 2005, 22(4):39-44.
HE H. Measurement of tree-ring width with WinDENDRO and crossdating methods[J]. J Chongqing Teach Coll (Nat Sci Ed), 2005, 22(4):39-44. DOI: 10.3969/j.issn.1672-6693.2005.04.011.
[15]
刘淑明, 马龙第, 孙丙寅, 等. 油松年轮生长与秦岭北坡气候的初步研究[J]. 西北林学院学报, 1997, 12(2):37-41.
LIU S M, MA L D, SUN B Y, et al. Correlation between ring growth of Pinus tabulaeformis and the climate of north-facing slope of the Qinling Mountains[J]. J Northwest For Coll, 1997, 12(2):37-41.
[16]
COOK E R, HOLMES R L. Users manual for program ARSTAN.Tucson,AZ,USA:laboratory of tree-ring research[R]. University of Arizona, 1986.
[17]
吴祥定. 树木年轮与气候变化[M]. 北京: 气象出版社, 1990:127-128.
WU X D. Tree-rings and climate change[M]. Beijing: China Meteorological Press, 1990:127-128.
[18]
DUNCAN R. An evaluatlion of errors in tree age estimates based on increment cores in kahikatea (Dacrycarpus dacrydioides)[J]. New Zealand Natural Sciences, 1989, 16:31-37.
[19]
赵颖慧, 吕泓辰, 甄贞, 等. 黑龙江省气象因子插值优化及与落叶松NPP相关性分析[J]. 南京林业大学学报(自然科学版), 2018, 42(3):1-9.
ZHAO Y H, LV H C, ZHEN Z, et al. Interpolation optimization of meteorological factors and its correlation ana-lysis with the larch NPP in Heilongjiang Province,China[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(3):1-9. DOI: 10.3969/j.issn.1000-2006.201709002.
[20]
彭剑峰, 勾晓华, 陈发虎, 等. 天山东部西伯利亚落叶松树轮生长对气候要素的响应分析[J]. 生态学报, 2006, 26(8):2723-2731.
PENG J F, GOU X H, CHEN F H, et al. The responses of growth ring width variations of Larix sibirica Ledb to climatic change in eastern Tianshan Mountains[J]. Acta Ecol Sin, 2006, 26(8):2723-2731. DOI: 10.3321/j.issn:1000-0933.2006.08.040.
[21]
周子建, 江源, 董满宇, 等. 长白山北坡不同海拔红松径向生长-气候因子关系对气温突变的响应[J]. 生态学报, 2018, 38(13):4668-4676.
ZHOU Z J, JIANG Y, DONG M Y, et al. Response of the relationship between radial growth and climatic factors to abrupt change of temperature along an altitudinal gradient on the northern slope of Changbai Mountain,northeast China[J]. Acta Ecol Sin, 2018, 38(13):4668-4676. DOI: 10.5846/stxb201706171104.
[22]
李江风. 树木年轮水文学研究与应用[M]. 北京: 科学出版社, 2000.
LI J F. Research and application of dendrohydrology[M]. Beijing: Science Press, 2000.
[23]
SEN P K, LINDEMAN R H, MERENDA P F, et al. Introduction to bivariate and multivariate analysis[J]. J Am Stat Assoc, 1981, 76(375):752. DOI: 10.2307/2287559.
[24]
王绍武, 叶瑾琳, 龚道溢, 等. 近百年中国年气温序列的建立[J]. 应用气象学报, 1998, 9(4):392-401.
WANG S W, YE J L, GONG D Y, et al. Construction of mean annual temperature series for the last one hundred years in China[J]. Q J Appl Meteorlolgy, 1998, 9(4):392-401.
[25]
林学椿, 于淑秋, 唐国利. 中国近百年温度序列[J]. 大气科学, 1995, 19(5):525-532.
LIN X C, YU S Q, TANG G L. Series of average air temperature over China for the last 100-year Period[J]. Sci Atmos Sin, 1995, 19(5):525-532.
[26]
任国玉, 徐铭志, 初子莹, 等. 近54年中国地面气温变化[J]. 气候与环境研究, 2005, 10(4):717-727.
REN G Y, XU M Z, CHU Z Y, et al. Changes of surface air temperature in China during 1951-2004[J]. Clim Environ Res, 2005, 10(4):717-727.
[27]
苏晓丹, 张雪萍. 黑龙江省近56年气温降水变化特征及突变分析[J]. 中国农学通报, 2011, 27(14):205-209.
SU X D, ZHANG X P. Analysis on the variation character of temperature and precipitation and abrupt change in Heilongjiang in recent 56 years[J]. Chin Agric Sci Bull, 2011, 27(14):205-209.
[28]
高露双, 王晓明, 赵秀海. 长白山阔叶红松林共存树种径向生长对气候变化的响应[J]. 北京林业大学学报, 2013, 35(3):24-31.
GAO L S, WANG X M, ZHAO X H. Growth response of two coexisting species to climate change in broadleaved Korean pine forests in Changbai Mountain,northeastern China[J]. J Beijing For Univ, 2013, 35(3):24-31. DOI: 10.13332/j.1000-1522.2013.03.015.
[29]
JIAO L, JIANG Y, ZHANG W T, et al. Divergent responses to climate factors in the radial growth of Larix sibirica in the eastern Tianshan Mountains,northwest China[J]. Trees, 2015, 29(6):1673-1686. DOI: 10.1007/s00468-015-1248-6.
[30]
赵学鹏, 白学平, 李俊霞, 等. 气候变暖背景下不同海拔长白落叶松对气候变化的响应[J]. 生态学杂志, 2019, 38(3):637-647.
ZHAO X P, BAI X P, LI J X, et al. Response of Larix olgensis at different elevations to climate change in the context of climate warming[J]. Chin J Ecol, 2019, 38(3):637-647. DOI: 10.13292/j.1000-4890.201903.021.
[31]
D’ARRIGO R D, KAUFMANN R K, DAVI N, et al. Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory,Canada[J]. Glob Biogeochem Cycles, 2004, 18(3):GB3021. DOI: 10.1029/2004GB002249.
[32]
都彦廷, 张冬有. 大兴安岭地区2001-2019年地表温度时空分布及影响因素分析[J]. 森林工程, 2020, 36(6):9-18.
DU Y T, ZHANG D Y. Spatio-temporal distribution of surface temperature and its influencing factors in Daxing’an Mountains from 2001 to 2019 [J]. Forest Engineering, 2020, 36(6): 9-18.
[33]
张先亮, 何兴元, 陈振举, 等. 大兴安岭山地樟子松径向生长对气候变暖的响应:以满归地区为例[J]. 应用生态学报, 2011, 22(12):3101-3108.
ZHANG X L, HE X Y, CHEN Z J, et al. Responses of Pinus sylvestris var.mongolica radial growth to climate warming in Great Xing’an Mountins:a case study in Mangui[J]. Chin J Appl Ecol, 2011, 22(12):3101-3108. DOI: 10.13287/j.1001-9332.2011.0473.
Based on the theory and methodology of dendrochronology, the tree ring width chronology of Pinus sylvestris var. mongolica in Mangui of Great Xing' an Mountains was developed, and the relationships between the standardized tree ring width chronology and local climate factors (temperature and precipitation) as well as the effects of climate factors on the P. sylvestris var. mongolica radial growth were analyzed. In this region, the mean monthly temperature in April-August of current year was the main factor limiting the radial growth, and the increasing mean monthly temperature from April to August had negative effects to the radial growth. The simulation of the variations of the radial growth by the mean monthly temperature change in April-August showed that the radial growth of P. sylvestris var. mongolica would present a declining trend accompanied with the warmer and drier regional climate condition.
[34]
于健, 徐倩倩, 何秀, 等. 长白山东坡落叶松树轮宽度对气候响应的分离效应[J]. 中南林业科技大学学报, 2013, 33(3):89-97.
YU J, XU Q Q, HE X, et al. Response divergence of Larix olgensis tree-ring widths to climate variation in eastern slope of Changbai Mountain,northeast China[J]. J Central South Univ For Technol, 2013, 33(3):89-97. DOI: 10.14067/j.cnki.1673-923x.2013.03.001.

中国科学院植物研究所张齐兵研究员、东北林业大学王晓春教授和瑞士森林、景观、雪研究所Paolo Cherubini研究员对本研究年表指标建立和数据分析给予指导。

PDF(2068 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/