JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2018, Vol. 42 ›› Issue (04): 89-96.doi: 10.3969/j.issn.1000-2006.201702035
Previous Articles Next Articles
WANG Jing1, ZHU Sheng2, LI Jiahui1, ZHANG Li1, ZHANG Meng1, JIANG Libo1*, HUANG Minren2, WU Rongling1
Online:
2018-07-27
Published:
2018-07-27
CLC Number:
WANG Jing, ZHU Sheng, LI Jiahui, ZHANG Li, ZHANG Meng, JIANG Libo, HUANG Minren, WU Rongling. Computational framework for mapping composite traits[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(04): 89-96.
[1] ANDERSON J T, WAGNER M R, RUSHWORTH C A, et al. The evolution of quantitative traits in complex environments[J]. Heredity, 2014, 112(1):4-12.
[2] 莫惠栋. 数量性状遗传基础研究的回顾与思考——后基因组时代数量遗传领域的挑战[J]. 扬州大学学报(农业与生命科学版), 2003, 24(2):24-31. DOI:10.3969/j.issn.1671-4652.2003.02.007. MO H D. Look back and reflect on genetic researches of variation for quantitative traits—a challenge for quantitative genetics in post-genome era[J]. Journal of Yangzhou University(Agricultural and Life Sciences Edition), 2003, 24(2):24-31. [3] SLATE J. From beavis to beak color: a simulation study to examine how much QTL mapping can reveal about the genetic architecture of quantitative traits[J]. Evolution, 2013, 67(5):1251-1262. [4] LAMDER E S, BOTSTEIN D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J]. Genetics, 1989, 121(1):185-199. [5] 童春发. 林木遗传图谱构建和QTL定位的统计方法[J]. 南京林业大学学报(自然科学版), 2004, 28(1):109. DOI:10.3969/j.issn.1000-2006.2004.01.029. TONG C F. Statistical methods for nstructing genetic linkage maps and mapping QTLs in forest trees[J]. Iournal of Naniing Forestry University(Natural Sciences Edition), 2004, 28(1):109. [6] KAO C H, ZENG Z B, TEASDALE R D. Multiple interval mapping for quantitative trait loci [J]. Genetics, 1999, 152(3):1203-1216. [7] WU R, LIN M. Functional mapping-how to map and study the genetic architecture of dynamic complex traits[J]. Nature Reviews Genetics, 2006, 7(3):229-237. [8] HIRSCHHORN J N, DALY M J. Genome-wide association studies for common diseases and complex traits[J]. Nature Reviews Genetics, 2005, 6(2): 95-108. [9] 吕洪超, 张瑞杰, 姜永帅,等. 全基因组数据分析软件PLINK在统计遗传学教学中的应用[J]. 科学中国人,2016(30):27-30. [10] YU J, PRESSOIR G, BRIGGS W H, et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness[J]. Nature Genetics, 2006, 38(2): 203-208. [11] KLASEN J R, BARBEZ E, MEIER L, et al. A multi-marker association method for genome-wide association studies without the need for population structure correction[J]. Nature Communications, 2016(7): 13299. [12] STEPHAN J, STEGLE O, BEYER A. A random forest approach to capture genetic effects in the presence of population structure[J]. Nature Communications, 2015(6):7432. [13] DAS K, LI J, WANG Z, et al. A dynamic model for genome-wide association studies[J]. Human Genetics, 2011, 129(6):629-639. [14] HAYES B J, PRYCE J, CHAMBERLAIN A J, et al. Genetic architecture of complex traits and accuracy of genomic prediction: Coat colour, milk-fat percentage, and type in holstein cattle as contrasting model traits[J]. Plos Genetics, 2010,6(9):e1001139. [15] HUANG X, HAN B. Natural variations and genome-wide association studies in crop plants[J]. Annual Review of Plant Biology, 2014, 65:531-551. [16] 段忠取,朱军. 全基因组关联分析研究进展[J]. 浙江大学学报(农业与生命科学版), 2015, 41(4):385-393. DUAN Z Q, ZHU J. Reacher progress of genome-wide association study[J]. Journal of Zhejiang University(Agricultural and Life Sciences Edition), 2015, 41(4):385-393. [17] MILES B, WAYNE M. Quantitative trait locus(QTL)analysis[R]. Nature Education, 2008. [18] MACKAY T F. Epistasis and quantitative traits: Using model organisms to study gene-gene interactions[J]. Nature Reviews Genetics, 2014, 15(1):22-33. [19] ZHAO K, TUNG C W, EIZENGA G C, et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa[J]. Nature Communications, 2011,467(2):467. [20] FROVA C, KRAJEWSKI P, FONZO N D, et al. Genetic analysis of drought tolerance in maize by molecular markers I. Yield components[J]. Theoretical and Applied Genetics, 1999, 99(1):280-288. [21] 王玉. 利用复合性状开展qtl作图的有效性研究[D]. 沈阳:沈阳农业大学, 2010. WANG Y. On the use of mathematically-derived composite traits and their efficiency in quantitive trait locus mapping[D]: Shenyang: Shenyang Agricalture University, 2010. [22] 李斌,陈听宽,崔凝. SIMPLEX算法与其他算法收敛特性的比较[J]. 华北电力大学学报(自然科学版), 2004, 31(3):51-55. LI B, CHEN T K, CUI N.Convergence characteristics of SIMPLEX comparing with other SIMPLEX algorithms[J]. Journal of North China Electric Power University(Natural Science Edition), 2004, 31(3):51-55. [23] 刘光辉,尹红婷. BFGS算法的全局收敛性分析[J]. 曲阜师范大学学报(自然科学版), 1994(1):1-8. LIU G H, YIN H T. Analysis on thglobal convergence of BFGS algorithm[J]. Journal of Qufu Normal University(Natural Sciences Edition), 1994(1):1-8. [24] XU M, JIANG L, ZHU S, et al. A computational framework for mapping the timing of vegetative phase change[J]. New Phytologist, 2016, 211(2):750-760. [25] LIU R. Light-harvesting chlorophyll a/b-binding proteins, positively involved in abscisic acid signalling, require a transcription repressor, WRKY40, to balance their function[J]. Journal of Experimental Botany, 2013, 64(18):2274-2275. [26] KEITH B, DONG X N, AUSUBEL F M, et al. Differential induction of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase genes in Arabidopsis thaliana by wounding and pathogenic attack[J]. Proceedings of the National Academy of Sciences, 1991, 88(19):8821-8825. [27] VOSS I, GOSS T, MUROZUKA E, et al. FdC1, a novel ferredoxin protein capable of alternative electron partitioning, increases in conditions of acceptor limitation at photosystem I[J]. Journal of Biological Chemistry, 2010, 286(1):50-59. [28] VOLL L M, JAMAI A, RENNÉ P, et al. The photorespiratory Arabidopsis shm1 mutant is deficient in SHM1[J]. Plant Physiology, 2006, 140(1):59-66. [29] REN G, AN K, YANG L, et al. Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis[J]. Plant Physiology, 2007, 144(3):1429-1441. [30] HARTUNG F, SUER S, KNOLL A, et al. Topoisomerase 3α and RMI1 suppress somatic crossovers and are essential for resolution of meiotic recombination intermediates in, Arabidopsis thaliana[J]. Plos Genetics, 2008, 4(12):e1000285. [31] MOEDER W, DEL P O, NAVARRE D A, et al. Aconitase plays a role in regulating resistance to oxidative stress and cell death in Arabidopsis and Nicotiana benthamiana[J]. Plant Molecular Biology, 2007, 63(2):273-287. [32] KIRIK A, EHRHARDT D W, KIRIK V. TONNEAU2/FASS regulates the geometry of microtubule nucleation and cortical array organization in interphase Arabidopsis cells[J]. Plant Cell, 2012, 24(3):1158-1170. [33] WANG W, WANG L, CHEN C, et al. Arabidopsis CSLD1 and CSLD4 are required for cellulose deposition and normal growth of pollen tubes[J]. Journal of Experimental Botany, 2011, 62(14):51-61. [34] HOBBIE L J. Auxin and cell polarity: the emergence of AXR4[J]. Trends in Plant Science, 2006(11):517-518. [35] 邬荣领, 林敏, 赵伟,等. 动态复杂性状遗传结构研究的统计模型[J]. 南京林业大学学报(自然科学版),2006,30(3):1-12. DOI:10.3969/j.issn.1000-2006.2006.03.001. WU R L, LIN M, ZHAO W, et al. Statistical models for studying the genetic architecture of dynamic complex traits[J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2006, 30(3):1-12. [36] BUCKLER E S, HOLLAND J B, BRADBURY P J, et al. The genetic architecture of maize flowering time[J]. Science, 2009, 325(5941):714-718. [37] 单保山. 遗传力的概念及其发展 Ⅰ.关于传统遗传力的几个问题[J]. 河北农业大学学报,1988,11(1):39-44. SHAN B S. The concept of heritability and its development Ⅰ. Some views on heritability[J]. Journal of Agricultural University of Hebei, 1988, 11(1):39-44. [38] 侯志强,吴启富. 抽样调查样本量的确定[J]. 全国商情:经济理论研究, 2007(3):108-109. HOU Z Q, WU Q F. Determination of sample size in sampling survey[J]. China Business: Economic Theory Research, 2007(3):108-109. [39] 胡文明. 作物复杂性状QTL定位相关的几个问题的探讨[D]. 扬州:扬州大学,2014. HU W M. Discussion of several issues related to QTL[D]. Yangzhou: Yangzhou University, 2014. [40] POETHIG R S. Heterochronic mutations affecting shoot development in maize[J]. Genetics,1988, 119(4):959-973. [41] RJE W, POTTS B M, REID J B. Genetic control of reproductive and vegetative phase change in the Eucalyptus risdonii-E. tenuiramis complex[J]. Australian Journal of Botany, 1998(46):45-63. [42] HUDSON C J, FREEMAN J S, JONES R C, et al. Genetic control of heterochrony in Eucalyptus globulus[J]. G3-Genes Genomes Genetics, 2014, 4(7):359-363. [43] POETHIG R S. Phase change and the regulation of developmental timing in plants[J]. Science, 2003, 301(5631):334-336. [44] ROUGVIE A E. Intrinsic and extrinsic regulators of developmental timing: from miRNAs to nutritional cues[J]. Development, 2005, 132(17):3787-3798. [45] BÄURLE I, DEAN C. The timing of developmental transitions in plants[J]. Cell, 2006, 125(4):655-664. [46] HUIJSER P, SCHMID M. The control of developmental phase transitions in plants[J]. Development, 2011, 138(19):4117-4129. |
[1] | XU Huihui, BAN Zhuo, WANG Chenxue, BI Quanxin, LIU Xiaojuan, WANG Libing. The identification and functional analysis of BZR1 genes in yellowhorn [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 12-22. |
[2] | QI Ya, WANG Gaiping, XUANYUAN Xintong, PENG Daqing, LI Shuomin, LI Shouke, CAO Fuliang. Evaluation of medicinal asexual strains of Xanthoceras sorbifolium [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 38-44. |
[3] | CHEN Shengkan, GUO Dongqiang, DENG Ziyu, TANG Qinglan, LIAO Changkun, YANG Zhiwang, ZHU Yuanli, LI Changrong. Stability evaluation on tree height for introduced provenances of Corymbia citriodora subsp. variegata [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 67-74. |
[4] | YAO Junxiu, REN Fei, WANG Yinhua, LI Qinghua, YAN Liping, ZHENG Yan, WU Dejun. Genetic diversity of germplasm resources of Sambucus based on SSR fluorescent marker [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 75-82. |
[5] | KE Xin, FEI Qi, XIA Xinrui, YE Jianren, ZHU Lihua. The factors influencing the embryogenic callus initiation and somatic embryo yield in Pinus elliottii resistant to pine needle brown spot disease [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 87-94. |
[6] | LIN Qiang, XU Jin, LI Shangqian, LIN Yunbin, ZHANG Yunqing, OUYANG Lei. The early selection and analysis of genetic variation of Cryptomeria japonica half-sib progeny from seed orchard in Fuding, Fujian Province [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 78-86. |
[7] | JIANG Bo, AN Xinmin. Precise genomic editing technology and its application in the improvement of woody plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 11-20. |
[8] | ZHANG Weixi, DING Mi, SU Xiaohua, LI Aiping, WANG Xiaojiang, YU Jinjin, LI Zhenghong, HUANG Qinjun, DING Changjun. Heterosis and drought resistance assessment of Populus simonii × P. nigra F1 hybrids based on growth traits and leaf anatomical structures [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 46-58. |
[9] | YANG Yuanmu, LI Na, CHEN Xinyu, XU Fang, PAN Wen, ZHANG Weihua. Study on wood variation of provenances and clones of Castanopsis hystrix [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 41-50. |
[10] | YAN Pingyu, ZHANG Lei, WANG Jiaxing, FENG Kele, WANG Haohao, ZHANG Hanguo. Analysis of genetic diversity and construction of core collections of Korean pine (Pinus koraiensis) natural population [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 69-80. |
[11] | WANG Jiaxing, YAN Pingyu, SUN Baifei, LIU Jinhong, FENG Kele, ZHANG Hanguo. Growth variation and superior families early selection of Larix olgensis free-pollinated families [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(5): 81-89. |
[12] | KUANG Zeyu, PENG Ye, FANG Yanming. Effects of volatile organic components of Ilex rotunda on its insect pollinator, Apis cerana [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 254-260. |
[13] | LIU Li, QU Yinquan, YU Yanhao, WANG Qian, FU Xiangxiang. Analysis of SSR locus based on the whole genome sequences of Cyclocarya paliurus and the development of polymorphic primers [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 67-75. |
[14] | LIU Xialan, SONG Ziqi, HU Fengrong, SHANG Xulan. A comparative study on leaf characters between diploid and tetraploid of Cyclocarya paliurus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 76-84. |
[15] | MA Tan, TIAN Ye, WANG Shujun, LI Wenhao, DUAN Qiying, ZHANG Qingyuan. Sex-specific leaf physiological responses of southern-type poplar to short-term intermittent soil drought [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 172-180. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||