JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2018, Vol. 42 ›› Issue (04): 141-147.doi: 10.3969/j.issn.1000-2006.201705029
Previous Articles Next Articles
LIU Xiaoshuang1, GONG Zhiwen2, WU Jian3
Online:
2018-07-27
Published:
2018-07-27
CLC Number:
LIU Xiaoshuang, GONG Zhiwen, WU Jian. Land use information extraction using multiple features derived from hyperspectral images[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(04): 141-147.
[1] 邓贤明, 苗放, 翟涌光, 等. 基于形态学的两种高光谱目标探测改进算法[J]. 中山大学学报(自然科学版), 2017, 56(1): 151-160. DOI: 10.13471/j.cnki.acta.snus.2017. 01. 024.
DENG X M, MIAO F, ZHAI Y G, et al. Two modified target detection algorithms based on morphology for hyperspectral imagery[J]. Acta Scientiarum Naturalum Universitatis Sunyatseni, 2007, 56(1):151 -160.
[2] 高孝杰, 简季, 戴晓爱, 等. 基于Frechet距离的光谱曲线匹配应用分析[J]. 武汉大学学报(信息科学版), 2016, 41(3): 408-414. DOI: 10.13203/j.whugis20140147. GAO X J, JIAN J, DAI X A, et al. Spectral curve matching application analysis based on frechet distance[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3):408-414. [3] 李杰, 万幼川. 基于光谱特征参量化的高光谱影像精细分类[J]. 地理空间信息, 2015, 13(4): 86-88. DOI: 10.3969/j.issn.1672-4623.2015.04.031. LI J, WAN Y C. Fine classification of hyperspectral image based on spectral features parametrization[J]. Geospatial Information, 2015, 13(4): 86-88. [4] 樊利恒, 吕俊伟, 邓江生. 基于分类器集成的高光谱遥感图像分类方法[J]. 光学学报, 2014, 34(9): 91-101. DOI: 10.3788/AOS201434.0910002. FAN L H, LÜ J W, DENG J S. Classification of hyperspectral remote sensing images based on bands grouping and classification ensembles [J]. Acta Ootica Sinica, 2014, 34(9):91-101. [5] 林海军, 张绘芳, 高亚琪, 等. 基于马氏距离法的荒漠树种高光谱识别[J]. 光谱学与光谱分析, 2014, 34(12): 3358-3362. DOI: 10.3964/j.issn.1000-0593(2014)12-3358-05. LIN H J, ZHANG H F, GAO Y Q, et al. Mahalanobis distance based hyperspectal characteristic discrimination of leaves of different desert tree species[J]. Spectroscopy and Spectral Analysis, 2014, 34(12): 3358-3362. [6] 吴见, 彭道黎. 基于空间信息的高光谱遥感植被分类技术[J]. 农业工程学报, 2012, 28(5): 150-153. DOI: 1002-6819(2012)-05-0150-04. WU J, PENG D L. Vegetation classification technology of hyperspectral remote sensing based on spatial information[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 150-153. [7] JAY S, GUILLAUME M. A novel maximum likelihood based method for mapping depth and water quality from hyperspectral remote-sensing data[J]. Remote Sensing of Environment, 2014, 147(18):121-132. DOI:10.1016/j.rse.2014.01.026. [8] 秦进春, 余旭初, 张鹏强, 等. 一种基于核偏最小二乘法的高光谱影像最佳波段选择方法[J]. 测绘科学技术学报, 2013, 30(2): 172-176. DOI: 1673-6338(2013)02-0172-05. QIN J C, YU X C, ZHANG P Q, et al. An optimal band selection method for hyperspectral imagery based on kernel partial least squares[J]. Journal of Geomatics Science and Technology, 2013, 30(2): 172-176. [9] 魏祥坡, 余旭初, 付琼莹, 等. 光谱角余弦与相关系数测度组合的光谱匹配分类方法与实践[J]. 地理与地理信息科学, 2016, 32(3): 29-33. DOI: 1672-0504(2016)03-0029-05. WEI X P, YU X C, FU Q Y, et al. Spectral matching classification approach and experiment combined with spectral angle cosine and spectral correlation coefficient[J] Geography and Geo-Information Science, 2016, 32(3):29-33. [10] 焦洪赞, 王少宇, 彭正洪. 基于条件随机场的光谱相似性匹配高光谱遥感影像聚类方法[J]. 武汉大学学报(工学版), 2016, 49(6): 937-943. DOI: 10.14188/j.1671-8844.2016-06-023. JIAO H Z, WANG S Y, PENG Z H. A spectral similarity matching classifier based on conditional random field for hyperspectral remote sensing imagery [J]. Engineering Journal of Wuhan University, 2016, 49(6): 937-943. [11] MAULIK U, CHAKRABORTY D. Learning with transductive SVM for semisupervised pixel classification of remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 77(3):66-78. DOI:10.1016/j.isprsjprs.2012.12.003. [12] LIN Z L, YAN L M. A support vector machine classifier based on a new kemel function model for hyperspectral data[J]. GIScience and Remote Sensing, 2015, 53(1):1-17. DOI:10.1080/15481603.2015.1114199. [13] PATRA S, BRUZZONE L. A novel SOM-SVM-based active learning technique for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(11):6899-7910. DOI:10.1109/TGRS.2014.2305516. [14] BIGDELI B, SAMADZADEGAN F, REINARTZ P. A decision fusion method based on multiple support vector machine system for fusion of hyperspectral and LIDAR data[J]. International Journal of Image and Data Fusion, 2014, 5(3):196-209. DOI:10.1080/19479832.2014.919964. [15] 李媛媛, 常庆瑞, 刘秀英, 等. 基于高光谱和BP神经网络的玉米叶片SPAD值遥感估算[J]. 农业工程学报, 2016, 32(16): 135-142. DOI: 1002-6819(2016)-16-0135-08. LI Y Y, CHANG Q R, LIU X Y, et al. Estimation of maize leaf PAD value based on hyperspectrum and BP neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(16): 135-142. [16] 周亚敏, 张荣群, 马鸿元, 等. 基于BP神经网络的盐湖矿物离子含量高光谱反演[J]. 国土资源遥感, 2016, 28(2): 34-40. DOI: 10.6046/gtzyyg.2016. 02. 06. ZHOU Y M, ZHANG R Q, MA H Y, et al. Retrieving of salt lake mineral ions salinity from hyper-spectral data based on BP neural network[J]. Remote Sensing for Land and Resources, 2016, 28(2): 34-40. [17] CHENG B Y, LIU Q, LI X W, et al. Building simplification using back propagation neural networks: a combination of cartographer's expertise and raster-based local perception[J]. GIScience and Remote Sensing, 2013, 50(5):527-542. DOI:10.1080/15481603.2013.823748. [18] ZHONG Y F, ZHANG L P, GONG W. Unsupervised remote sensing image classification using an artificial immune network[J]. International Journal of Remote Sensing, 2011, 32(19):5461-5483. DOI:10.1080/01431161.2010.502155. [19] 杜培军, 夏俊士, 薛朝辉, 等. 高光谱遥感影像分类研究进展[J]. 遥感学报, 2016, 20(2): 236-249. DOI: 1007-4619(2016)02-0236-21. DU P J, XIA J S, XUE Z H, et al. Review of hyperspectral remote sensing image classification[J]. Journal of Remote Sensing, 2016, 20(2): 236-256. [20] 朱济帅, 尹作霞, 谭琨, 等. 基于空间邻域信息的高光谱遥感影像半监督协同训练[J]. 遥感技术与应用, 2016, 31(6): 1122-1130. DOI: 10.11873/j.issn.1004-0323.2016.6.1122. ZHU J S, YIN Z X, TAN K, et al. Semi-supervised tri-training hyperspectral image classification approach based on spatial neighborhood information [J]. Remote Sensing Technology and Application, 2016, 31(6): 1122-1130. [21] 王彩玲, 王洪伟, 胡炳樑, 等. 一种新的空谱联合探测高光谱影像目标探测算法[J]. 光谱学与光谱分析, 2016, 36(4): 1163-1169. DOI: 10.3964/j.issn.1000-0593(2016)04-1163-07. WANG C L, WANG H W, HU B L, et al. A new spectral-spatial algorithm method for hyperspectral image target detection[J]. Spectroscopy and Spectral Analysis, 2016, 36(4): 1163-1169. [22] 程志会, 谢福鼎. 基于空间特征与纹理信息的高光谱图像半监督分类[J]. 测绘通报, 2016, 54(12): 56-59. DOI: 10.13474/j.cnki.11-2246.2016.0401. CHENG Z H, XIE F D. Semi-supervised classification for hyperspectral image based on spatial features and texture information[J]. Bulletin of Surveying and Mapping, 2016, 54(12): 56-59. [23] 王增茂, 杜博, 张良培, 等. 基于纹理特征和形态学特征融合的高光谱影像分类法[J]. 光子学报, 2014, 43(8): 116-123. DOI: 10.3788/gzxb20144308.0810002. WANG Z M, DU B, ZHANG L P, et al. Based on texture feature and extend morphological profile fusion for hyperspectral image classification[J]. Acta Photonica Sinica, 2014, 43(8): 116-123. [24] 余旭初, 谭熊, 付琼莹, 等. 联合纹理和光谱特征的高光谱影像多核分类方法[J]. 测绘通报, 2014, 52(9): 38-42. DOI: 10.13474/j.cnki.11-2246.2014.0289. YU X C, TAN X, FU Q Y, et al. Combined texture-spectral feature for multiple kernel classification of hyperspectral images[J]. Bulletin of Surveying and Mapping, 2014, 52(9): 38-42. [25] 胡玉福, 邓良基, 匡先辉, 等. 基于纹理特征的高分辨率遥感图像土地利用分类研究[J]. 地理与地理信息科学, 2011, 27(5): 42-45. HU Y F, DENG L J, KUANG X H, et al. Study on land use classification of high resolution remote sensing image based on texture feature[J]. Geography and Geo-Information Science, 2011, 27(5): 42-45. [26] 陈波, 胡玉福, 喻攀, 等. 基于纹理和地形辅助的山区土地利用信息提取研究[J]. 地理与地理信息科学, 2017, 33(1): 1-7. DIO: 10.3969/j.issn.1672-0504.2017.01.001. CHEN B, HU Y F, YU P, et al. Research on information extraction of land use in mountainous areas based on texture and terrain [J]. Geography and Geo-Information Science, 2017, 33(1): 1-7. DIO: 10.3969/j.issn.1672-0504.2017.01.001. [27] HARALICK R M, SHANMUGAM K, DINSTEIN I H. Textural features for image classification[J]. IEEE Transactions on Systems, Man and Cybernetics, 1973, 3(6): 610-621. [28] CRISTO A, FISHER K, PEREZ R M, et al. Optimization of the multi-spectral euclidean distance calculation for FPGA-based spaceborne systems[J]. Aerospace Science and Technology, 2014, 32(1):1-9. DOI:10.1016/j.ast.2013.12.013. [29] LUO G C, CHEN G Y, TIAN L, et al. Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising[J]. Canadian Journal of Remote Sensing, 2016, 42(2):106-116. DOI:10.1080/07038992.2016.1160772. |
[1] | REN Huazhang, SUN Yuan, LI Jilin, HAO Yu, LIN Zihang. Optimization of a drone flight plan for an urban street tree survey [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 175-182. |
[2] | ZHU Yunfeng, WANG Hong, QIN Shuhong, YANG Yi, WANG Yicong. Research on the cooling effect of parks in Nanjing based on multi-source data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 285-294. |
[3] | SHI Song, LI Wen, ZHAI Yucen, LIN Xiaopeng, DING Yishu. Spatiotemporal changes of vegetation NDVI and those reasons in northeast China Tiger and Leopard National Park [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 31-41. |
[4] | HUANG Jingshu, GAO Xindan, JING Weipeng. Research on remote sensing change monitoring of urban land types based on BOVW and SVM [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 37-44. |
[5] | XU Shanshan, LYU Jingyan, CHEN Fangyuan. Remote sensing vegetation detection method based on the deep convolutional neural network [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 185-193. |
[6] | JIANG Yuting, LI Chengde, FAN Yongmei. Reports of a new record genus and description of a new species of Encyrtidae (Hymenoptera: Chalcidoidea) from China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 209-211. |
[7] | SHEN Wenjuan, JI Mei, LI Mingshi. Review on monitoring methods of the effects of forest changes on regional temperature based on multi-source remote sensing data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(3): 1-11. |
[8] | QIU Fengting, GUO Zhifeng, ZHANG Zongke, WEI Xianhu, LI Junjie, LYU Zheng. Spatio-temporal change characteristics of vegetation coverage and its relationship with meteorological factors in the Greater Mekong Subregion [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 187-195. |
[9] | MAO Lijun, LI Haitao, XUE Xiaoming, LI Jianwei, LI Mingshi. Developing remote sensing based methods for land cover change detection in national parks from GEE platform: a case study from the Qianjiangyuan National Park pilot area [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 213-220. |
[10] | WU Jiong, JIANG Fugen, PENG Shaofeng, MA Kaisen, CHEN Song, SUN Hua. Estimating the tree height and yield of Camellia oleifera by combining crown volume [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 53-62. |
[11] | JIANG Jiawen, WEN Xiaorong, GU Haibo, ZHANG Zhengnan, LIU Fangzhou, ZHANG Yanli, SUN Yuan. Dynamic analysis of point cloud characteristic parameters and volume structure based on multi-station scan [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(6): 83-90. |
[12] | WANG Yanchao,ZHU Yidan,XU Dandan. The impact of urban heat island of Landsat 8 OLI on plant phenology in Nanjing [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(06): 99-105. |
[13] | FANG Xiufeng, TAN Bingxiang, DU Huaqiang, WANG Huaijing, LI Taixing. Suitability of band width for Hyperion image classification based on wavelet analysis [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(05): 141-147. |
[14] | ZHOU Mei,LI Chungan,DAI Huabing. Influence factors and measures of remote sensing monitoring precision of mangrove space distribution [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2018, 42(01): 163-168. |
[15] | WU Wenhao,WANG Xinjie,HUANG Ruifen. Study on urban heat islands in Changzhou City based on remote sensing data [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2017, 41(05): 185-190. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||