Variation analysis of flavonoids and related active substances content in ginkgo leaves from different regions

WU Yaqiong, GUO Jing, ZHOU Qi, XU Meng, WANG Guibin, XU Li’an

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2019, Vol. 43 ›› Issue (03) : 183-188.

PDF(1458423 KB)
PDF(1458423 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2019, Vol. 43 ›› Issue (03) : 183-188. DOI: 10.3969/j.issn.1000-2006.201803004

Variation analysis of flavonoids and related active substances content in ginkgo leaves from different regions

  • WU Yaqiong, GUO Jing, ZHOU Qi, XU Meng, WANG Guibin, XU Li’an*
Author information +
History +

Abstract

【Objective】We aimed to understand the correlation and the variation in the content of active compounds [flavonoids, soluble sugar, protein and phenylalanine ammonia-lyase(PAL)] of Ginkgo biloba L.(ginkgo)leaves from 10 different regions.【Method】Their active compounds determined, geographic sources and individual variations were analyzed.【Result】Under the same environmental conditions, the bioactive contents of ginkgo leaves differed significantly among the 10 regions. The average flavonoids, soluble sugar, protein content and PAL activity of plants from the 10 ginkgo-growing regions were 9.13 mg/g, 157.15 mg/g, 0.71 g/L and 10.96 U/g, respectively. Ginkgo flavonoid content was positively correlated with soluble sugar conten and PAL activity, whereas soluble sugar and protein content were significantly negatively correlated.【Conclusion】Ginkgo from the Hanzhong region had the highest flavonoid content, which should be noted for future sourcing of ginkgo. The variation coefficients for flavonoids in the Duyun region was the largest; thus, more attention must be paid to individual selection from among and within regions.

Cite this article

Download Citations
WU Yaqiong, GUO Jing, ZHOU Qi, XU Meng, WANG Guibin, XU Li’an. Variation analysis of flavonoids and related active substances content in ginkgo leaves from different regions[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2019, 43(03): 183-188 https://doi.org/10.3969/j.issn.1000-2006.201803004

References

[1] GONG W, CHEN C, DOBE C, et al. Phylogeography of a living fossil: pleistocene glaciations forced Ginkgo biloba L.(Ginkgoaceae)into two refuge areas in China with limited subsequent postglacial expansion[J]. Mol Phylogenet Evol, 2008, 48(3): 1094-1105. DOI:10.1016/j.ympev.2008.05.003.
[2] ZHOU Z, ZHENG S. The missing link in Ginkgo evolution[J]. Nature, 2003, 423(6942): 821-822. DOI:10.1038/423821a.
[3] GUO J, WU Y, WANG B, et al. The effects of fertilization on the growth and physiological characteristics of Ginkgo biloba L.[J]. Forests, 2016, 7(12): 293. DOI:10.3390/f7120293.
[4] LIU H, CAO F, YIN T, et al. A highly dense genetic map for Ginkgo biloba constructed using sequence-based markers[J]. Front Plant Sci, 2017, 8: 1041. DOI:10.3389/fpls.2017.01041.
[5] DEFEUDIS F V, DRIEU K. Ginkgo biloba extract(EGb 761)and CNS functions: basic studies and clinical applications[J]. Curr Drug Targets, 2000, 1(1): 25-58. DOI:10.2174/1389450003349380.
[6] VAN BEEK TA. Chemical analysis of Ginkgo biloba leaves and extracts[J]. J Chromatogr A, 2002, 967(1): 21-55. DOI:10.1016/s0021-9673(02)00172-3.
[7] JAAKOLA L, HOHTOLA A. Effect of latitude on flavonoid biosynthesis in plants[J]. Plant Cell Environ, 2010, 33(8): 1239-1247. DOI:10.1111/j.1365-3040.2010.02154.x.
[8] WANG J, CAO F, SU E, et al. Improving flavonoid extraction from Ginkgo biloba leaves by prefermentation processing[J]. J Agric Food Chem, 2013, 61(24): 5783-5791. DOI:10.1021/jf400712n.
[9] DAY A J, WILLIAMSON G. Biomarkers for exposure to dietary flavonoids: a review of the current evidence for identification of quercetin glycosides in plasma[J]. Br J Nutr, 2001, 86(S1): 105-110. DOI:10.1079/bjn2001342.
[10] DEFEUDIS FV, PAPADOPOULOS V, DRIEU K. Ginkgo biloba extracts and cancer: a research area in its infancy[J]. Fundam Clin Pharmacol, 2003, 17(4): 405-417. DOI: 10.1046/j.1472-8206.2003.00156.x.
[11] AGATI G, AZZARELLO E, POLLASTRI S, et al. Flavonoids as antioxidants in plants: location and functional significance[J]. Plant Sci, 2012, 196: 67-76. DOI:10.1016/j.plantsci.2012.07.014.
[12] IWASHITA K, KOBORI M, YAMAKI K, et al. Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells[J]. Biosci Biotechnol Biochem, 2000, 64(9): 1813-1820. DOI:10.1271/bbb.64.1813.
[13] KOES R, VERWEIJ W, QUATTROCCHIO F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways[J]. Trends Plant Sci, 2005, 10(5): 236-242. DOI:10.1016/j.tplants.2005.03.002.
[14] 陈学森, 章文才, 邓秀新. 树龄及季节对银杏叶黄酮与萜内酯含量的影响[J]. 果树科学, 1997, 14(4): 226-229. DOI:10.13925/j.cnki.gsxb.1997.04.019.
CHEN X S, ZHANG W C, DENG X X. Seasonal changes of the contents of flavonoids and ginkgolides in the leaves of Ginkgo biloba and their changes at different stages of development of the tree [J]. Journal of Fruit Science, 1997, 14(4): 226-229.
[15] 郁万文, 刘新亮, 曹福亮, 等. 不同银杏无性系叶药用成分差异及聚类分析[J]. 植物学报, 2014, 49(3): 292-305. Doi: 10.3724/SP.J.1259.2014.00292.
YU W W, LIU X L, CAO F L, et al. Cluster analysis on the main medicinal components in differential leaves of Ginkgo clones [J]. Chinese Bulletin of Botany, 2014, 49(3): 292-305.
[16] 林建春, 向志攀, 吴春晓, 等. 徐州地区银杏叶类黄酮含量的季节性动态变化[J]. 河北农业科学, 2013, 17(4): 46-48,82.
LIN J C, XIANG Z P, WU C X, et al. Seasonal variation of flavonoid content in Ginkgo biloba L. leaves in Xuzhou [J]. Journal of Hebei Agricultural Sciences, 2013, 17(4): 46-48,82.
[17] 杨伟丽, 马媛媛. 甘肃不同产地及不同季节银杏叶中总黄酮苷的含量测定[J]. 甘肃医药, 2013, 32(3): 169-171. DOI:10.15975/j.cnki.gsyy.2013.03.009.
YANG W L, MA Y Y. Gansu from different origins and different season in Ginkgo biloba flavonoid glycosides content determination [J]. Gansu Medical Journal, 2013, 32(3): 169-171.
[18] HASLER A, STICHER O, MEIER B. Identification and determination of the flavonoids from Ginkgo biloba by high-performance liquid chromatography[J]. J Chromatogr A, 1992, 605(1): 41-48. DOI:10.1016/0021-9673(92)85026-p.
[19] MACDONALD M J, D’CUNHA G B. A modern view of phenylalanine ammonia lyase[J]. Biochem Cell Biol, 2007, 85(3): 273-282. DOI:10.1139/O07-018.
[20] NEUMANN K H, KUMAR A, IMANI J. Plant cell and tissue culture-a tool in biotechnology [M]. Springer-Verlag Berlin Heidelberg, 2009: 161-179.
[21] AHARONI A, GALILI G. Metabolic engineering of the plant primary-secondary metabolism interface[J]. Curr Opin Biotechnol, 2011, 22(2): 239-244. DOI:10.1016/j.copbio.2010.11.004.
[22] MA Q J, SUN M H, LU J, et al. Transcription factor AREB2 is involved in soluble sugar accumulation by activating sugar transporter and amylase genes[J]. Plant Physiol, 2017, 174(4): 2348-2362. DOI:10.1104/pp.17.00502.
[23] ZHANG W, XU F, CHENG H, et al. Effect of chlorocholine chloride on chlorophyll, photosynthesis, soluble sugar and flavonoids of Ginkgo biloba[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2013, 41(1): 97-103. DOI:10.15835/nbha4118294.
[24] PEÑUELAS J, LLUSIà J. Effects of carbon dioxide, water supply, and seasonally on terpene content and emission by Rosmarinus officials[J]. Journal of Chemical Ecology, 1997, 23(4): 979-993. DOI:10.1023/b:joec.0000006383.29650.d7.
[25] JENO B. Production ecdogy of secondary plant products[M]. Phoenix Ariz:Oryx Press,1986.
[26] XU F, DENG G, CHENG S Y, et al. Molecular cloning, characterization and expression of the phenylalanine ammonia-lyase gene from Juglans regia [J]. Molecules, 2012, 17(7): 7810-7823. Doi: 10.3390/molecules17077810
[27] FISCHER T C, GOSCH C, PFEIFFER J, et al. Flavonoid genes of pear(Pyrus communis)[J]. Trees, 2007, 21(5): 521-529. DOI:10.1007/s00468-007-0145-z.
[28] JU Z, LIU C, YUAN Y. Activities of chalcone synthase and UDPGal: flavonoid-3-o-glycosyltransferase in relation to anthocyanin synthesis in apple[J]. Scientia Horticulturae, 1995, 63(3): 175-185. DOI:10.1016/0304-4238(95)00807-6.
[29] MATO M, ONOZAKI T, OZEKI Y, et al. Flavonoid biosynthesis in white-flowered Sim carnations(Dianthus caryophyllus)[J]. Scientia Horticulturae, 2000, 84(3): 333-347. DOI:10.1016/s0304-4238(99)00140-5.
[30] JENKINS G I, GIVENS I, BAXTER S, et al. Environmental regulation of flavonoid biosynthesis[J]. Rafael Bañón I Martínez, 2008, 18(6): 98-102. DOI: 10.1079/9781845934590.0240.
[31] ZHOU Q, MU K, XU M, et al. Variation in the concentrations of major secondary metabolites in Ginkgo leaves from different geographical populations[J]. Forests, 2017, 8(8): 266. DOI:10.3390/f8080266.
[32] 曹福亮, 黄敏仁, 桂仁意, 等. 银杏主要栽培品种遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2005, 29(6): 1-6.DOI:10.3969/j.issn.1000-2006.2005.06.001.
CAO F L, HUANG M R, GUI R Y, et al. The fingerprinting and genetic diversity of main Ginkgo cultivars [J]. Journal of Nanjing Forestry University(Natural Sciences Edition), 2005, 29(6): 1-6.
PDF(1458423 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/